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ABSTRACT 

 

DOMAIN-BOUNDARY ELEMENT METHOD FOR ELASTODYNAMICS 

OF FUNCTIONALLY GRADED THICK-WALLED CYLINDERS AND 

ANNULLAR COATINGS 

 

 

 

Abeidi, Abdelrahim 

Doctor of Philosophy, Mechanical Engineering 

Supervisor : Prof. Dr. Serkan Dağ 

 

December 2022, 111 pages 

 

In this thesis, a new computational technique using domain boundary element method 

(D-BEM) will be developed to perform the elastodynamic analysis of functionally 

graded thick-walled cylinders and annular coatings. The thick-walled cylinder material 

properties are varying along the radial direction according to a power distribution law 

of volume fraction; hence, the cylinder can withstand pressure shock types of loadings. 

These mechanical loads are described by uniform dynamic pressures at the inner and 

outer edges. Therefore, the FGM thick-walled cylinder is subjected to axisymmetric 

external loading in plane strain condition. The domain boundary element method will 

be implemented to solve the integral equations achieved by using the static 

fundamental solution to write the governing differential equation in the residual form. 

However, since the problem is dynamic, time dependent, isoparametric quadrilateral 

elements will be proposed to discretize the domain. The integral equations will be 

computed for each element and a system of time dependent ordinary differential 

equations will result. The time response is obtained by using Houbolt method of time 

marching scheme to solve the system of ordinary differential equations. Therefore, the 

proposed D-BEM method is verified by considering various researches, which study 

the elastodynamics of FGM thick-walled cylinders subjected to different mechanical 

loadings on the inner surface, such as: mechanical shock and exponential loadings. 

Furthermore, the FGM thick-walled cylinder elastodynamic response has been studied 
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using the D-BEM in plane stress and plane strain conditions. An internal and external 

ramp dynamic pressure and an internal exponential dynamic pressure are considered 

in the study of the composite thick-walled cylinders and annular coatings. The radial 

displacement response, radial and hoop stresses are calculated at different material 

property gradation values. Moreover, for the pressure shock loadings selected, the 

spatial radial displacement, spatial radial and hoop stresses are studied.  

 

Keywords: Thick-Walled Cylinder, Annular Coatings, FGM, Elastodynamic, D-

BEM.  
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ÖZ 

 

FONKSİYONEL OLARAK DERECELENDİRİLMİŞ KALIN DUVARLI 

SİLİNDİRLERİN VE DAİRESEL KAPLAMALARIN ELASTODİNAMİK 

İÇİN ALAN SINIR ELEMAN YÖNETEMİNİ 
 
 

 

Abeidi, Abdelrahim 

Doktora, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Serkan Dağ 

 

 

Aralık 2022, 111 sayfa 

 

Bu tezde, fonksiyonel olarak derecelendirilmiş kalın duvarlı silindirlerin ve dairesel 

kaplamaların elastodinamik analizini gerçekleştirmek için alan sınır eleman yöntemini 

(D-BEM) kullanan yeni bir hesaplama tekniği geliştirilecektir. Kalın duvarlı silindir 

malzeme özellikleri, hacim fraksiyonunun bir güç dağıtım yasasına göre radyal yön 

boyunca değişmektedir; dolayısıyla silindir, basınç şoklu yükleme türlerine 

dayanabilir. Bu mekanik yükler, iç ve dış kenarlardaki üniform dinamik basınçlarla 

tanımlanır. Bu nedenle, FGM kalın duvarlı silindir, düzlem gerinme durumunda 

eksenel simetrik dış yüklemeye maruz kalır. Alan sınır eleman yöntemi, ana 

diferansiyel denklemi artık formda yazmak için statik temel çözüm kullanılarak elde 

edilen integral denklemleri çözmek için uygulanacaktır. Ancak problem dinamik 

olduğundan, zamana bağlı olduğundan, alanı ayrıklaştırmak için izoparametrik 

dörtgen elemanlar önerilecektir. Her eleman için integral denklemler hesaplanacak ve 

zamana bağlı adi diferansiyel denklemler sistemi ortaya çıkacaktır. Zaman yanıtı, adi 

diferansiyel denklemler sistemini çözmek için Houbolt zaman yürüyüşü şeması 

yöntemi kullanılarak elde edilir. Bu nedenle, önerilen D-BEM yöntemi, iç yüzeyde 

mekanik şok ve üstel yüklemeleri gibi farklı mekanik yüklere maruz kalan FGM kalın 

duvarlı silindirlerin elastodinamiğini inceleyen çeşitli araştırmalar dikkate alınarak 

doğrulanmıştır. Ayrıca, FGM kalın duvarlı silindir elastodinamik tepkisi, düzlem 

gerilme ve düzlem gerinim koşullarında D-BEM kullanılarak incelenmiştir. Kompozit 
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kalın duvarlı silindirler ve dairesel kaplamaların çalışmasında bir iç ve dış rampa 

dinamik basıncı ve bir iç üstel dinamik basınç göz önünde bulundurulmuştur. Radyal 

yer değiştirme tepkisi, radyal ve teğetsel gerilmeleri, farklı malzeme özelliği 

derecelendirme değerlerinde hesaplanır. Ayrıca, seçilen basınç şoku yükleri için, 

uzaysal radyal yer değiştirme, uzaysal radyal ve teğetsel gerilmeleri incelenmiştir. 

 

Anahtar Kelimeler: Kalın Duvarlı Silindir, Halka Kaplamalar, FGM, Elastodinamik, 

D-BEM. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 FGM thick-walled cylinders 

In 1980’s functionally graded materials (FGM), a new class of multiphase composite 

materials, have become more attracting to researchers and engineering applications 

due to their ability to withstand high thermo-mechanical loads like in the aerospace 

environments. They are inhomogeneous microscopically as well as macroscopically 

because of the spatial variations of the constituent phases along a particular direction. 

However, the material properties vary gradually according to a power law distribution 

of the volume fraction of the material constituents through the geometry. Therefore, it 

eliminates the problems arise from the use of traditional composite materials such as 

low bond strength between layers and inharmonious properties; hence, maximize 

material performance, especially by increasing resistance to interface failure. 

Moreover, its composition and structure can be enhanced depending on the real 

conditions of use. Since the initiation of the concept, different kinds of manufacturing 

technologies have been developed for FGMs. These processes include vapor 

deposition, electrodeposition, thermal spraying, powder metallurgy, additive 

manufacturing, and liquid state methods [1-3]. Functionally graded material 

components have become more used in different industries such as aerospace, 

automotive, machineries, defense, biotechnology, and energy, because such 

applications require gradual change in composition over a particular direction within 

the material [1,4-6]. 

In the early years, the methods of FGM production were classified according to the 

composition of components, such as metal/metal, metal/ceramic, and 

ceramic/polymer, etc. Today, different classifications exist for the FGM production 

methods by structure (discrete and continuous), state (deposition, solid and liquid), 

graded type (composition, microstructure and porosity), dimensions (thick and thin), 

the field of application, feasible form complexity, overall process expenses as well as 

the energy consumption and the environmental impact [7]. 
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Because of their potential for common usage in different fields of engineering, 

functionally graded thick-walled cylinders, pressure vessels, and disks have been 

examined extensively. Research studies related to these applications results in 

improvements in the system behavior. 

Thick-walled cylinders fabricated from functionally graded materials which are 

specifically mixtures of ceramics and metals with continuous variations of the 

microstructure constituents are commonly used. For FGM cylinders and disks 

subjected to dynamic loads that may be utilized in aerospace, nuclear, and other 

industries, analyzing the response is a critical stage. Disks also are extensively used in 

many mechanical applications such as in steam and turbo generators rotors, turbo-

pumps, turbochargers, ship propellers, turbo-alternators, flywheels in vehicles 

featuring storage of energy and machine tools, wind generators, centrifugal 

compressors that is widely used in the process industry today, turbine-driven tankers, 

and in high temperature aerospace industries. 

Today, theoretical, numerical and experimental studies on thick-walled cylinders and 

disks have been carried out by many researchers due to their increasing importance in 

mechanical applications. The main focus in research studies of pressure vessels was 

on mechanical behavior under different types of loading conditions. These studies can 

be divided into two main groups. In the first group of articles, pressure loads on the 

cylindrical bodies are assumed to be applied gradually. Therefore, the formulation is 

based on elastostatics. Thus, the studies regarding static loading include analytical 

solutions for FGM thick-walled cylinders under internal pressure [8,9] and, 

asymmetric loads [10], internal functionally graded coatings [11], arbitrary property 

distributions [12], rotating piezoelectric cylinders [13], and cylinders under thermal 

stresses [14-18]. Fracture mechanics of functionally graded thick-walled cylinders is 

examined by the weight function technique [19,20] and finite element analysis [21,22]. 

On the other hand, the second group of work deals with time-dependent loadings, and 

thus the formulation here is built on the equations of elastodynamics. However, various 

analytical solution procedures are proposed for elastodynamic analysis of thick-walled 

functionally graded cylinders. Fu et al. [23] presented a Laplace transform based 

procedure for coupled thermoelastic analysis of multi-layered and functionally graded 

hollow cylinders under general transient thermal and mechanical loadings. Nikkhah et 

al. [24] developed an analytical solution by using separation of variables and 
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orthogonal expansion technique. Baba and Keles [25] employed Laplace transform to 

examine free and forced vibrations of functionally graded hollow cylinders and 

spheres. Lastly, Zhang et al. [26] outlined a wave function expansion technique for 

dynamic analysis of FGM cylindrical tubes due to SH-waves. Moreover, 

computational methods developed for elastodynamics of functionally graded thick-

walled cylinders help reveal dynamic response characteristics under different types of 

loading conditions. Hoseini et al. [27] have used a meshless local Petrov-Galerkin 

method for coupled governing equations of thermoelasticity of FGM thick-walled 

cylinders. Dorduncu et al. [28] have applied finite difference method to perform the 

analysis of elastic wave propagation. Sayyidmousavi et al. [29] have performed the 

dynamic analysis and optimized the graded porous nanocomposite cylinders by using 

the meshfree radial point interpolation method. Xu et al. [30] have examined the 

elastodynamics of FGM thick-walled cylinders with a two-dimensional property 

variation by applying time-domain spectral element method. Additionally, different 

elastodynamic cases are solved based on finite elements method are illustrated and 

studied by Shakeri et al. [31], Asemi et al. [32], and Shahabian et al. [33]. 

Furthermore, other research works have studied the analysis of stresses and strains for 

disks and, various important and interesting assumptions have been considered in these 

studies such as geometry of disks, uniformly distributed static or dynamic types of 

loading (static, dynamic or concentrated). Moreover, the variation of the angular speed 

of the disks is considered in some researches, the thermo-elastic analysis, and some 

elastodynamic analysis have been investigated under different thermal loading and 

boundary conditions, several analytical and computational methods have been used to 

perform the analysis. Beside the stress and strain analysis most of these works focus 

on the effect of the gradient index of the functionally graded material [34]. 

On the other side, the stress analysis of FGM disks is studied by several researchers, 

Zenkour [35], Callioglu [36] and Eraslan et al. [37] have developed different analytical 

elastic analysis of FGM rotating disk with constant angular velocity and thickness. In 

addition, the elastic solution of a variable geometry FGM disk is found analytically 

and numerically by Yildirim [38] and Zheng et al. [39], respectively. 
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1.2 Boundary Element Method 

Today, without using the numerical techniques, it would be very difficult to solve 

practical and complicated engineering problems, as the experimental simulation is 

very costly as well. These techniques in continuum mechanics are based on the idea of 

deriving some equations that describe accurately the behavior of a small differential 

element. The numerical methods in continuum can be classified to three approaches: 

finite difference method, finite element Method FEM and, boundary element Method 

BEM. 

Finite difference method, FDM, is the simplest of all and easy to program, but it has 

some drawbacks like the difficulty of changing the difference elements in some regions 

such as the stress concentration areas. Therefore, it is not popular in the stress analysis 

problems. On the other hand, finite element method, FEM, is the most widespread 

method used to analyze structures for decades. It has been valued as the modern 

computational tool since it can solve many realistic problems. The whole domain 

needs to be discretized into elements and over each element the behavior is described 

by the governing differential equation. But for infinite domains, it uses fictitious 

boundaries and this in turn reduces the accuracy. This domain discretization and 

infinite domain problems are considered as drawbacks and are the main reason for the 

invention of boundary element method, BEM. The standard form of the BEM is built 

on transforming the governing differential equations into surface or boundary integral 

equations; hence, discretizing the boundary into elements. It has resolved the two 

disadvantages of the FEM and, also showed an effective accuracy in computing fluxes, 

stresses, strains and moments. It can also easily deal with concentrated forces either in 

the domain or on the boundary. However, the main disadvantages of BEM are it is 

mathematics complexity, as it requires the establishment of the integral equations and 

finding the fundamental solution and also the presence of domain integrals in time 

dependent and nonlinear problems such as dynamic and plasticity problem. During the 

last three decades, intensive research work has been performed to overcome the 

obstacles in using the BEM. Nowadays, there are different approaches in BEM that 

deal with complicated time dependent problems, linear problems with unknown 

fundamental solution and nonlinear problems like dual reciprocity DR-BEM, analogue 

equation method AEM, and domain boundary element method D-BEM. However, all 
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these approaches include domain integral equation in their formulation, so that it 

requires domain discretization and time marching scheme to approximate the 

acceleration, but it uses a smaller number of nodes and elements (fully populated 

matrices) compared to FEM which in turn uses large number of elements and nodes 

(sparsely populated matrices). 

Moreover, since the BEM gives extreme accuracy results for the field solutions, it is 

beneficial in the research work to verify the results by comparing both methods FEM 

and BEM. Different BEM methods are developed to find solutions to the time 

dependent problems. For some simple problems, the time dependent fundamental 

solution is existing and the integral equations can be developed and hence the 

application of the TD-BEM. Additionally, even though the fundamental solution is 

available in some cases, there is a difficulty in deriving the integral equations [40]. 

These time dependent problems can also be solved in the transformed domain such as 

Laplace domain; thus, removing time dependency from the boundary integral 

equations, and the inverse Laplace transform is applied to get the physical quantities. 

However, the solution obtained is not efficient compared to the time domain solutions, 

because the inversion transform is a curve fitting process and it can be unstable if too 

many transform parameters are used, whereas reducing the transform parameters will 

cause a poor curve fitting [41].  On the other hand, these problems can be solved using 

the Dual Reciprocity Method DR-BEM, which was first introduced by Brebbia and 

Nardini [42], when solving the wave dynamic equation domain-boundary integral 

equations are obtained, and a technique is developed to convert the domain integrals 

into boundary integrals in order to solve it with the standard BEM. The method is 

further developed and the Green’s reciprocal identity, i.e., the reciprocity principal, is 

used to transform all the domain integrals to boundary integrals. However, domain 

nodes can be included at the points desired, and the solution depends on the type of 

the approximation functions used. Generally, DR-BEM is not feasible in differential 

equations with variable coefficients [43]. Another efficient method is the Analogue 

Equation Method, AEM, it solves linear, nonlinear and also coupled equations. The 

idea is based on replacing any differential equation with another analogue differential 

equation of the same order with known fundamental solution and, unknown fictitious 

sources. It is also applied to a set of coupled differential equations, where the analogue 

equations may be uncoupled equations [43]. 
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The domain-boundary element method formulation D-BEM, on the other hand, 

employs the static fundamental solution, Kelvin solution, and keeps the domain 

integral equations resulted from the inertia terms. Therefore, in order to perform the 

elastodynamic analysis, the discretization of the whole domain and time marching 

schemes are requiredIn the current study, we present a novel computational procedure 

for elastodynamic analysis of functionally graded thick-walled cylinders and annular 

coatings subjected to pressure shocks. The procedure proposed is based on the domain-

boundary element method (DBEM). Although DBEM has been used to solve dynamic 

problems involving FGM beams and plates and certain types of homogeneous 

structures, the formulation and implementation for elastodynamics of functionally 

graded thick-walled cylinders has not been developed. In this work, we show how the 

method can be formulated and implemented for FGM and composite thick-walled 

cylinders subjected to pressure shocks over the internal or outer surfaces. The proposed 

method can deal with general geometries including an arbitrary number of functionally 

graded material or homogeneous annular bodies. 

The main characteristic of the domain-boundary element method is that it uses a static 

fundamental solution in a weighted residual form instead of time dependent. Hence, 

the resulted integral equation contains domain integrals, which require discretization 

of the domain. In the initial uses of DBEM, Beskos et al. [44,45] have examined a 

transient dynamic response of homogeneous three-dimensional elastoplastic 

assemblies. Carrer and Mansur [46] have performed the analysis of homogeneous 

components by proposing an alternative time marching schemes for D-BEM. Carrer 

et al. [47] have studied the dynamic analysis of Timoshenko beams by employing a D-

BEM. Application of D-BEM for dynamic analysis of continuous beams is illustrated 

by Carrer et al. [48]. On the other hand, domain-boundary element method has been 

extended to cover the dynamic problems involving functionally graded material plates 

and beams. Eshraghi and Dag [49, 50] employed D-BEM to study the forced vibrations 

of FGM circular plates and beams. Ahmed et al. [51] have studied the elastodynamic 

analysis of fiber-reinforced laminated plates. Finally, Eshraghi and Dag [52] have 

applied D-BEM to analyze the FGM micro-beams.  

Articles in the present literature cover problems involving FGM beams and plates, and 

different types of homogeneous components. There are no past studies found on 

domain-boundary element method for elastodynamics of FGM thick-walled cylinders. 

This study presents a novel DBEM formulation and application for the elastodynamics 
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of FGM cylinders and coatings subjected to internal and external pressure shocks. The 

governing partial differential equation of the studied problem is the wave equation for 

an inhomogeneous axisymmetric domain, and derived in agreement with plane 

elastodynamics. Thus, the static fundamental solution is obtained and used in the 

weighted residual form. The governing equation of motion is then converted to an 

integral equation by shifting the unknown function to the known one using the by parts 

intyegration and the boundary conditions. The domain is then discretized by quadratic 

cells, and the integral equation is transformed to a system of temporal ordinary 

differential equations. Houbolt method is employed to numerically solve the system 

of ODEs and to compute radial displacement and stress components. The proposed 

procedure is validated by comparisons to analytical solutions found in literature for a 

functionally graded thick-walled cylinder. The obtained results show the 

elastodynamic behavior of FGM thick-walled cylinders and annular coatings subjected 

to ramp and exponential types of pressure shock loadings. 

1.3 Review of the Literature 

The research work found in literature on thick-walled cylinders is divided into mainly 

two categories. Firstly, the elastostatic problem, Xin et al. [8] have considered the 

asymmetric state in studying the problem of FGM thick-walled cylinder, which is 

subjected to an internal pressure shock. The cylinder consists of two linear elastic 

materials and, the material properties vary according to a certain volume fraction 

function. They proposed analytical solution that is performed using a hypergeometric 

function. Non-dimensional expressions for the radial displacement and stresses are 

used and, the numerical results obtained are compared with the theoretical. The effect 

of the volume fraction, Poisson’s ratio and Young modulus are studied. Another 

analytical solution for the elastostatic problem is presented by Dui et al. [9] they 

developed an approximate analytical solution based on the Mori-Tanaka method. An 

axisymmetric long FGM thick-walled cylinder in plane strain state is considered and, 

subjected to internal pressure. The wall of the cylinder consists of two isotropic linear 

elastic materials with a certain volume fraction function. Since the analytical solution 

of the boundary value governing differential equation is difficult to find, they used an 

approximation of both the bulk modulus and shear modulus based on Mori-Tanaka 

method. The numerical results obtained are compared with the results found by FEM 
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using ANSYS software. Moreover, two other solutions are obtained by using Voigt 

upper bound and Reuss lower bound and, comparison of the non-dimensional radial, 

circumferential and axial stresses and non-dimensional radial displacement is 

performed for all the methods with FEM by ANSYS. However, Hao Li et al. [10] 

consider a non-symmetric loading in studying FGM thick-walled cylinder. They 

derived an analytical solution for the displacements and stresses using the complex 

function theory of Muskhelishvili (1977). In plane strain state, it is based on the idea 

of expressing the displacements and stresses in terms of two complex potential, and 

the analytical solutions are derived by dividing the cylinders into several homogeneous 

layers. On the other side, Sburlati [11] derived analytical solution for the thick-walled 

FGM cylinder subjected to internal and external pressure in plane strain condition, 

whereas two types of the volume fraction law of the elasticity modulus are used; power 

law and exponential law. Furthermore, another solution is obtained in case of FGM 

coating on the inner surface. Radial displacement and stresses are calculated with 

considering constant Poisson’s ratio and, the effect of material inhomogeneity on the 

response of the FGM cylinder. However, an arbitrary elastic property varying 

exponentially is considered in the research work of Chen [12]. The FGM thick-walled 

cylinder is divided into layers and a continuum conditions at the interface are used, 

whereas Poisson’s ratio is constant. A numerical solution is performed and non-

dimensional results of the displacement and stresses are found and the effect of the 

material property variation is studied. Hong-Yan Zheng et al. [13] derived analytical 

solution for a FGPM hollow cylinder rotating with a constant speed around its axis. 

The mechanical, thermal and electrical properties of the piezoelectric material are 

varying according to a power law along the wall thickness. Uncoupled heat conduction 

in steady state condition is considered. Numerical results of the radial displacement, 

stresses and the distribution of the electric potential under mechanical, electric and, 

thermal loads are calculated and the effect of the inhomogeneity of the material is 

studied. Moreover, Shao et al. [14] developed an analytical solution for FGM thick-

walled cylinder exposed to thermal and mechanical loads. They employed Laplace 

technique in their solution and, unsteady heat field and, FGM exponential material law 

are considered. The study of the transient stresses and radial displacement is performed 

and the effect of the material index variation is studied. Jabbari et al. [15] presented an 

analytical solution for the FGM thick-walled cylinder. The material properties varied 

along the radial direction of the wall thickness according to a power law distribution 
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and, the steady state condition of the uncoupled heat conduction. The axisymmetric 

thermal mechanical stresses calculations are made. Shao [16] performed an 

approximated analytical solution for FGM thick-walled cylinder subjected to 

axisymmetric thermo-mechanical loading. The material properties are assumed to be 

independent on temperature but varying along the radial direction. But, it is considered 

to be homogenous for each layer of approximation and a continuity boundary 

conditions are considered at each interface. Moreover, Peng et al. [17] performed the 

thermoelastic analysis of FGM long hollow cylinder with material properties, except 

Poisson’s ratio, varies along the radial direction in power law fraction. The heat 

conduction equation is uncoupled and steady state. The governing boundary value 

problem is converted into Fredholm integral equation that is solved numerically. The 

numerical results are presented and the influence of the material gradient on thermal 

stresses is investigated. A transient two-dimensional thermoelastic problem have been 

solved by Keder et al. [18]. The material properties are assumed to be temperature and 

axial direction dependent except Poisson’s ratio which is considered constant. The 

transient heat state is studied for the FGM thick-walled cylinder to investigate the 

thermal stresses produced and, the influence of the material inhomogeneity on the 

thermal and mechanical stresses is examined. Whilst the fracture mechanics of the 

FGM thick-walled cylinder subjected to transient thermomechanical loading has been 

studied by Dag et al. [19]. A circumferential internal crack is considered and, the 

cylinder is pressurized internally and externally. The material and thermal properties 

varied across the wall thickness. A weight function method is introduced to perform 

the fracture analysis of this problem. The idea is based on deriving analytical solutions 

of the transient temperature and stresses distributions of the uncracked cylinder by 

applying finite Henkel transformation. The numerical results obtained by the weight 

function method is compared to those generated by finite element method. Further 

analysis is performed to study the effect of the crack depth, time and material property 

index. Moreover, Dag et al. [20] studied the thermal loads of a circumferentially 

cracked FGM thick-walled cylinder. The transient temperature distribution is 

determined by non-Fourier hyperbolic heat conduction and, the transient temperature 

and stresses distribution are obtained by converting the governing differential equation 

into Fredholm integral equation in Laplace domain; thus, an inverse Laplace numerical 

technique is used to obtain these distributions in time domain. Three-dimensional 

analysis of FGM hollow cylinder with elliptical surface crack has been investigated by 
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Nami et al. [21]. The cylinder is subjected to a thermo-mechanical loading and, the 

material properties vary exponentially. A commercial finite element solver ANSYS is 

used to examine the problem. Farahpour et al. [22] investigate the stress intensity 

factor of a longitudinal semi-elliptical crack on the inner surface of FGM cylinder. 

Ansys software (FEM) is used to perform the analysis. 

Secondly, the elastodynamic problem of FGM thick-walled cylinders. Some 

researchers have developed analytical elastodynamic solutions. Fu et al. [23] have 

investigated the thermoelastic behavior of FGM hollow cylinder under transient 

thermal and mechanical loading. The inner and outer surfaces of the cylinder are under 

thermal load and material properties vary along the thickness. Laplace transform 

method is used to eliminate the time dependence of the coupled differential equations. 

Then Laplace inverse technique is performed to return the obtained results in time 

domain. Finally, the effect of heat conduction, coupling effects, loading types and 

material property index on the thermal and elastic results is studied. Nikkhah et al. [24] 

have presented analytical elastodynamic solution to FGM thick hollow cylinder 

subjected to uniform dynamic pressures at the inner and outer surfaces in the absence 

of the thermal field. The dynamic radial displacement is divided into quasi-static and 

dynamic parts. The quasi-static part satisfies the static equilibrium and the boundary 

tractions, whereas the dynamic part, set of eigenfunctions, satisfies the stress-free 

boundary conditions. The quasi-static radial displacement is found analytically by 

solving Euler’s equation and, the dynamic radial displacement is found analytically by 

solving Bessel equation. The radial displacement and stress distributions are calculated 

for different loading conditions and, the effect of material property index is examined. 

Baba et al. [25] have investigated the effect of anisotropy on the vibration behavior of 

composite hollow cylinder under internal dynamic pressure. Analytical solution is 

performed using Laplace transform and, the obtained results are transformed in the 

time domain using the modified Durbin numerical inversion. Radial displacement and 

stress distributions results are found under different values of anisotropy parameter. 

However, Zhang et al. [26] have developed an analytical solution to the elastodynamic 

response of the FGM hollow cylinder subjected to elastic waves using wavefunction 

expansion method. The wave fields in the inhomogeneous cylinder and the 

homogeneous medium that is described with different governing equations of motion, 

are obtained in different wavefunction series forms. To illustrate the dynamic response 
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of the FGM cylinder, the dynamic stress concentration factor (DSCF) is introduced 

and plotted. Hoseini et al. [27] developed the meshless local Petrov Galerkin (MLPG) 

method to analyze the coupled thermoelasticity problem according to the Green–

Naghdi theory in FGM thick hollow cylinders without considering energy dissipation. 

The local integral equations are found from the weak form of the equations of motion 

with considering Heaviside step function. The spatial variation of radial displacement 

and the temperature are approximated using certain interpolation. A system of ordinary 

differential equations is obtained after the substitution of spatial approximations into 

the local integral equations obtained. The system of ODE is solved by using the 

Newmark finite difference method. The effects of different grading indices on the 

FGM thick-walled cylinder and on transient behaviors of the temperature as well as 

the displacement fields are discussed. In the research work of Dorduncu et al. [28] 

wave propagation in FGM circular cylinder subjected to dynamic load has been 

investigated. The upper surface of the cylinder is considered to be ceramic alumina 

and the lower surface is nickel. The through-thickness material properties of the FGM 

circular cylinder were estimated using the Mori–Tanaka homogenization scheme. The 

governing equations of motion is discretized by the finite difference method. The 

effect of the grading exponent is examined and, the calculation of the displacements 

and stresses are performed. Sayyidmousavi et al. [29] have studied the dynamic 

response of functionally graded porous polymeric cylinders. Three different types of 

porosity patterns are examined (symmetric, asymmetric and uniform). The meshless 

scheme used in the solution is radial point interpolation meshfree method (RPIM). The 

effect of the volume fraction of reinforcement and porosity patterns distribution have 

been investigated. In addition, Xu et al. [30] have studied dynamic response of FGM 

thick hollow. An axisymmetric solid spectral finite element model is proposed for the 

analysis of wave propagation in the cylinder. The material properties vary along the 

axial direction of the cylinder. Therefore, the upper part of the cylinder is assumed to 

be made of pure ceramic, whereas the bottom side is considered to be made of pure 

metal. The method is verified by comparing with the conventional FEM. The dynamic 

response of displacement and stresses and their time histories components are obtained 

for different material properties grading indices. Shakeri et al. [31] have used the finite 

element modelling to perform the analysis of FGM thick-walled cylinder under the 

impact loading. They subdivide the cylinder into different layers of sub-cylinders and, 

each layer is considered isotropic and homogenous. Material properties vary between 
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layers according to a power law in the radial direction. Continuity conditions are 

placed at the interface between the layers. The time histories and responses are 

calculated first in the frequency domain by using fast Fourier transform. In addition, 

Asemi et al. [32] introduced finite elements method based on Rayleigh-Ritz energy 

formulation to study the response of FGM thick-walled cylinder under ramp shock 

pressure. The material property is varying according to a power law except Poisson’s 

ratio which is assumed constant. The response of displacement, stresses, wave 

propagation and velocities of radial stress wave propagation for various material 

property exponents have been examined. Shahabian et al. [33] have presented a 

stochastic dynamic response of FGM thick hollow cylinder with uncertain material 

properties, random values are generated using Monte Carlo method, subjected to a 

uniform dynamic internal pressure. The dynamic governing differential equation is 

solved using Galerkin finite element and Newmark finite difference methods but, no 

thermal field is applied and the outer surface is traction free. 

However, most of the research works on the FGM disks in literature are related to the 

elastic or coupled and uncoupled thermoelastic analysis with different boundary 

conditions, and geometries. Researchers have investigated the FGM disks, rotating or 

stationary, in many different thermal and mechanical fields and provide analytical, 

semi analytical and numerical solutions with various methods. Ali Kursun et al. [53] 

have investigated the effect of the gradient index on a stationary FGM constant 

thickness disk. The thermoelastic analysis is studied considering a uniform constant 

inner pressure, fixed outer surface of the disk and a linear temperature distribution; 

hence, an analytical solution is obtained. Bektas et al. [54] have studied a stationary 

FGM disk, with constant thickness and two different grading indexes, considering the 

thermal field of uniform and linear temperature distribution. An analytical solution of 

the thermoelastic problem was developed under constant internal pressure and traction 

free outer surface and, compared to the results obtained from the finite element 

commercial software ANSYS. Ootao et al. [55] have studied the transient 

thermoelastic analysis of a FGM stationary disk with traction free surfaces. Hence, 

they developed an analytical solution by using Laplace transformation and Bessel 

functions in both the governing differential equations; the transient thermal and the 

thermoelastic equations.  
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The coupled thermoelastic analysis of a FGM stationary disk is studied by Eslami et 

al. [56], a plane stress assumption is considered and the boundary conditions are 

specified. The inner surface is considered traction free and subjected to thermal shock, 

whereas the outer surface is thermally insulated and fixed. However, since there is a 

time rate change of the thermal boundary condition at the inner surface, a couple is 

occurred between the elastic and the thermal fields, and they have used Galerkin finite 

element method after using the Laplace transform to change the time domain into the 

space domain. 

Therefore, by considering the reviewed studies on FGM thick-walled cylinders, no one 

has used the domain boundary element method, D-BEM, with Houbolt’s time 

marching scheme to perform the elastodynamic analysis. Thus, this new computational 

technique will be developed to study the dynamic response of the functionally graded 

material thick-walled cylinders (stationery disks) under different types of loadings. 

Hence, in this research, the study of the response of time dependent of radial 

displacement and stresses, spatial radial displacements and stresses; as well as, 

investigating the effect of the inhomogeneity grading index of material that is varying 

in the radial direction will be performed. 
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CHAPTER 2 

RESEARCH METHODOLGY 

 

 

 

2.1 Statement of the Problem 

In this study, FGM thick-walled cylinder or hollow disk is considered. The thick-

walled cylinder has an inner radius, 𝑟𝑖, an outer radius, 𝑟𝑜, and a constant thickness, ℎ, 

and it has been illustrated in the cylindrical coordinate system (𝑟, 𝜃, 𝑧), as shown in 

fig. (1). In addition, it is assumed that the cylinder’s material consists of two distinct 

materials at the inner and outer radius, and the material physical properties, 𝑃(𝑟), vary 

along the radial direction with power law distribution of the volume fraction, to 

describe a functionally graded material, as follows: 

Pr( ) Pr

n

o

o

r
r

r

 
=  

 
        (1) 

Where,  

Pr(r), is a generic material property. 

Pro, property at the outer radius. 

𝑛, grading index of the material. 

𝑟𝑜, outer radius of the disk. 

Hence, the modulus of elasticity, 𝐸(𝑟), the mass density, 𝜌(𝑟), are varying along the 

radial direction, whereas the Poisson’s ratio is considered constant (𝜈 = 0.3). The 

constancy of Poisson’s ratio is due to the fact that it generally varies between values 

that are closed to each other; and hence, the effect of this variation is not important 

when compared to the effect of the other physical material properties [24,32].  

 Since the geometry is symmetric and according to the applied boundary conditions, 

the problem is considered axisymmetric.  
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Figure 1:  FGM thick-walled cylinder under pressure shocks. 

 

2.1.1 Elastodynamic Formulation 

An element of the thick-walled cylinder with all the tractions is illustrated in figure 

(2). Hence, by ignoring the gravity effect and all parts of the cylinder are not subjected 

to any centrifugal force; therefore, radial force, 𝑓𝑟, and the circumferential force, 𝑓𝜃 

will vanish. On the other hand, an external asymmetric dynamic loading, 𝑃𝑜(𝑡, 𝜃) and 

internal axisymmetric loading, 𝑃𝑖(𝑡), are considered on the outer and inner surfaces of 

the thick-walled cylinder, respectively, as shown in figure (1).  
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Figure 2: Two-dimensional element in polar coordinates 

 

Therefore, for the element in the plane stress condition, the two-dimensional 

equilibrium equations can be written as follows: 

In the 𝑟-direction  ( )
( )2

2

,ru r t
F r dv

t




 
=


    (2) 

In the 𝜃-direction   ( )
( )2

2

,u r t
F r dv

t

 


 
=


    (3) 

Where,  

dv hrd dr=          (4) 

Substituting the summation of forces in the radial direction, in equation (2):
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Substituting the summation of forces in the circumferential direction, in equation (3)
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   (6) 

Simplifying and dividing equations (5 & 6) by elemental volume, 𝑑𝑣, the 

elastodynamic equations of motion are obtained, as follows:  
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     (8) 

However, for either plane stress or plane strain condition with axisymmetric geometry 

and loading, the governing equation of motion is eqn. (7). 

The linear constitutive elastic equations for plane stress are as follows:

( )
( )

1
rr rr

E r
  = −        (9) 

( )
( )

1
rr

E r
   = −        (10) 

The linear relations between the strain and the displacement components in 

polar coordinates formulation are given by: 
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Therefore, the linear constitutive relations in terms of stresses are:

( )
( )21

rr rr

E r
  


= +

−
       (13)

( )
( )21
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−
= +        (14) 

Where,  

𝑢𝑟, 𝑢𝜃, are the radial and the circumferential displacements, respectively. 

𝜀𝑟𝑟 and, 𝜀𝜃𝜃, are the radial and circumferential strains, respectively. 

Hence, the problem is axisymmetric and the governing elastodynamic equation of 

motion for a FGM thick-walled cylinder in displacement formulation can be obtained 

by substituting linear constitutive equations in terms of stresses and the strain 

equations into the elastodynamic equation of motion, as follows:  
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 (15) 

The elasticity modulus: 

( )
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        (16) 

The density: 
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For the plane strain, we can get the elasticity modulus ( )E r  and Poisson’s ratio from 

the plane stress, as follows:   
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( )
2

( )
1

E r
E r


=

−
         (18)

1





=

−
         (19)

Substituting the elasticity modulus and the density in the equation of motion (15), we 

get: 

( ) ( )
( )

( ) ( )
2 1

2 1

22 2

2 2
1

2

( )1
( )

1 1, ,
,

1 ,r r r

r

o

o n n

n n
o

u r t u r t u r t
u r t

r

n n
r

r r rr tE

 
−

−

−  
+ +

+ −
=

  
 

          (20) 

2.1.1.1 Boundary and Initial Conditions 

Since the problem is axisymmetric, the stress boundary conditions of the composite 

thick-walled cylinder are expressed as: 

( ) ( ),r i ir t P t = −         (21)

( ) ( ),r o or t P t = −         (22) 

The initial conditions can be written as, 

( ) ( ), 0
or ru r u r=         (23)

( ) ( ), 0
or ru r u r=         (24) 

Where, 𝑢𝑟0
(𝑟)  and 𝑢̇𝑟0

(𝑟) are the initial radial displacement, and the initial radial 

velocity, respectively.  
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CHAPTER 3 

D-BEM FORMULATION 

 

 

 

3.1 Fundamental Solution 

The idea is to transform the governing partial differential equation into integral 

equation by employing the weight residual form; whereas the solution is only possible 

by using the discretization techniques.  

In the D-BEM, the static fundamental solution is used and not the time dependent 

fundamental solution. Therefore, let us consider ur
∗(r, ξ)  be the fundamental solution 

for this case study, and seeking the static fundamental solution that satisfies the 

governing equation of motion. 

However, the fundamental solution, point load (Kelvin solution) physically expresses 

the displacements produced in a body by a concentrated unit load. Consider the unit 

concentrated force 𝐹(𝐹𝜉), |𝐹| = 1 is applied at an interior point, 𝑃(𝑟, 𝜃), in the 

domain, Ω, and the effect of this force is found at any other point in the domain, 

𝑄(ξ, 𝜃). The density of the body forces produced by the force 𝐹 at the point 𝑄(ξ, 𝜃) 

can be expressed using the delta function δ(𝑟 − 𝜉), as illustrated in fig. (3). Therefore, 

the Navier, displacement formulation, linear equation, used to find the static 

fundamental solution by substituting the fundamental solution, is as follows: 

( ) ( )
( ) ( )

* *

*

2

2
1
2

1 1 ,
,

1,r r

r r
u r u r

u r
r

n

r

n

r r


 
 


−

 
+ =



+
+



−
  (25) 

Where, the delta function is:  

( )
0

r
r

r


 



 =
− = 


        (26) 



22 
 

 

Figure 3: Dirac delta and Kelvin problem 

The fundamental solution is expressed as: 

( ) ( ) ( )* , ,ru r H r w r  = −        (27) 

𝐻(𝑟 − 𝜉), is the Heaviside unit step function. 

( )
1

0

r
H r

r







− = 


        (28) 

𝑤(𝑟, 𝜉), is a kernel that satisfies the homogeneous PDE with the conditions:

2

2
0

n

r r rn

dw d w
w

dr dr
  

−

= = =−
= = = =       (29) 

1

1
1

n

rn

d w

dr


−

=−
=         (30) 

 

So, in the case of the governing equation (25), the resulting conditions are: 

0, 1r r
dw

w and
dr

 = == =        (31) 

Hence, the fundamental solution 𝑢𝑟
∗(𝑟, 𝜉) at point 𝑄(𝜉, 𝑡) is the solution of 

homogenous PDE (25).  
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Substituting the fundamental solution eqn. (27) in eqn. (25), and considering the 

derivatives as follows: 

( ) ( )
( ) ( )

( )* , ,
,rdu r dH r dw r

w r H r
dr dr dr

  
 

−
= + −    (32) 

 

Where, 

( )
( )

dH r
r

dr


 

−
= −        (33) 

( )
( ) ( ) ( )

( )* , ,
,rdu r dw r

r w r H r
dr dr

 
   = − + −     (34) 

By substituting the condition from eqn. (31), we get: 

( )
( )

( )* , ,rdu r dw r
H r

dr dr

 
= −       (35) 

Similarly,  

( )
( )

( )
( )

( )2 * 2

2 2

, , ,rd u r dw r d w r
r H r

drdr dr

  
  = − + −    (36) 

( )
( ) ( )

( )2 * 2

2 2

, ,rd u r d w r
r H r

dr dr

 
  = − + −     (37) 

By substituting eqns. (27, 35, and 37 into eqn. (25), we get: 

( ) ( )
( )

( )
( )

( ) ( ) ( )

2
1

2

1
2

, ,1

1
,

d w r dw rn
r H r H r

r drdr

n
H r w r r

r

 
   

   


+
− + − + −

−
+ − = −

   (38) 

Then, by substituting and simplifying and for  𝑟 > 𝜉, 

( ) ( )
( )1

2

2 2
1, , 1

, 0
1d nw r dw r

w r
dr rr

n

d r

  


−
+ + =

+
    (39) 

This is non-homogeneous Cauchy-Euler equation and the solution can be found easily 

by using: 

( ) mw r r=          (40) 
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The solution is: 

( )

2 2
1 1 1 1 1 14 4 4 4

2 2
1 2

n n n n n n

w r C r C r

 − + − + − − − +

= +     (41) 

The conditions eqn. (31) are used to find the constants 𝐶1 and 𝐶2. Thus, the 

fundamental solution 𝑢𝑟
∗(𝑟, 𝜉) at any point in the domain 𝑄(𝜉, 𝑡) is the solution of 

homogenous DE obtained: 

( )

1 1 1 1

2 2

1

,

n a an

r r
w r

a




 

− + − − 
    

= −    
    

 

     (42) 

Where,  

2
1 1 14 4a n n= − +         (43) 
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3.2 The Integral Equation 

The Fundamental solution is used in BEM to write the governing PDE in the weight-

residual form. The idea is to consider the residual remains when inserting the 

approximated solution in the governing PDE, multiplies this residual with the 

fundamental solution (weighting function), and seeking the disappearance of this 

product over the domain. 

( ) ( )
( )

( ) ( )
( )

2 1

2 1)

2

2 2

(
*

2 2

2

1 1

)

(

, , 1
,

,   0

,

1

1

o

i

r r
rr

r
or r

o

n n

n n
o

u r t u r t
u r t

rr
u r dr

u r t

tE

n n

r r

r

r




  −

−

   −
 + +

 
= 

− 
− 

+

  

   (44) 

Hence, to obtain the integral equation formulation, all the differentiation acting on the 

unknown function, 𝑢𝑟(𝑟, 𝑡), are shifted by the integration by parts to act on the known 

function (fundamental solution), 𝑢𝑟
∗(𝑟, 𝜉). 

( )
( )

( )
( ) ( )

( )

( )
( )

2 *
* *

2

2 *

2

, , ,
, , ,

,
,

oo

i i

o

i

rr
r r r

r r r

r r

r
r

r

r

u r t u r t du r
u r dr u r u r t

r drr

u r
u r t dr

r


 



  
=  − 

   


+







 (45) 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

* *

*
*

2

,1 1
, , ,

,1 1
, , ,

o o

ii

o o

i i

r r
r

r r r
rr

r r
r

r r r

r r

u r tn n
u r dr u r t u r

r r r

du rn n
u r t dr u r u r t dr

r dr r

 




+ + 
=    

+ +
− +



 

   (46) 

Substituting in eqn. (44), we get: 
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( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( )

2 1

2 1

*
* *1

2 * *
*1 1

2 2

*
*1 1

2

( )

( )

, ,1
, , ,

, ,1 1
, ,

,1 1
, 2 ,

(1 )

o

i

o

i

o

i

r

r r
r r r

r

r
r r

r r

r

r
r

r r

r

n no
n n

o o

u r t u rn
u r u r u r t

r r r

u r u rn n
u r u r t dr

r rr r

u rn n
u r u r t dr

r rr

r u
E r


 

  





  
−

−

   +
  + − +

   
  

  + −
 + + +
  

 + +
 −
 
 

−
=





( )
( )2

*

2

,
,

o

i

r
r

r

r

u r t
r dr

t







  (47) 

Simplifying, 

( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )

2

*
* *1

*
* *1

*
*1 1

2

(

, ,1
, , ,

, ,1
, , ,

,1 1
, 2 ,

(1 )

o

i

r o r o
r o r o r o

o

r

r i r i
r i r i r i

i

r
r

r r

r

o
n n

o o

u r t u rn
u r u r u r t

r r r
u t

u r t u rn
u r u r u r t

r r r

u rn n
u r u r t dr

r rr

E r


 




 




  

−

   +
  + −

   
 

  + +
   +
  − − −

     

 + +
 −
 
 

−
=



( )
( )

2 1

1

2
( ) *

) 2

,
,

o

i

r
rn n

r

r

u r t
r u r dr

t
− 




 (48) 

Using the stress boundary conditions: 

( )or P t = − , at the outer radius, or r= . 

( )ir P t = − , at the inner radius, ir r= . 

From the constitutive equations, we get: 
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( )
( ) ( )

( )21,
,

i

r i
r i

i
i

u r t
u r t P t

r r E

 −
= − −


     (49)

( )
( ) ( )

( )21,
,

r o
r o

o o
o

u r t
u r t P t

r r E

 −
= − −


     (50) 

Substituting the equations of derivatives, we get the integral equation: 

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

2 1

2 1

*
*1

*
*1

*
*1 1

2

2
( ) *

( ) 2

,1
, ,

,1
, ,

,1 1
, 2 ,

,(1 )
,

o

i

i

r o
r o r o

o

r

r i
r i r i

i

r
r

r r

r

rn no
rn n

o o r

u rn
u r u r t

r r
u t

u rn
u r u r t

r r

u rn n
u r u r t dr

r rr

u r t
r u r dr

tE r












 



−

−

  + −
  − −
  
 

  + +
  + −
  −
    

 + +
 − =
 
 

−





( )
( )

( ) ( )
( )

( )* *
1 1

, ,

or

o r o i r i
o i

P t u r P t u r
E E

 
 

 − −
+ −



 .i or r    (51) 

However, the presence of the inertial domain integral and the non-linearity term in the 

integral equation will require the discretization of the domain.  
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3.3 Numerical Procedure 

Because of the presence of inertia and the axisymmetric of the problem, the domain 

can be described as a line connecting the inner and the outer rims of the thick-walled 

cylinder (blue line), as shown in figure (4). Therefore, the domain line is discretized 

into isoparametric quadratic elements, to ensure that the geometry and the variables 

are approximated with an equal order. However, shape functions, developed in finite 

elements and taken to boundary element, are used to describe the geometry and 

behavior of any element, because they use the nodes on the element that have the 

variable value.  

r

P1(t)

P2(t)

To

Ti

 

Figure 4: Domain and symmetric boundary conditions 

 

Thus, the domain is discretized and divided into a number of quadratic elements, M, 

and each cell has three nodes, as shown in figure (5). 

 

Figure 5: Domain discretization into quadratic elements 

1 2 M 

1 2 3 4 5 2M -1  2M 2M +1  

r = ri r = ro 

… 

… 
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The total number of nodes, N, is found by the following relation: 

2 1N M= +           (52) 

Hence, for the 
thj  element, there are 3 nodes  and, 1 ≤ 𝑗 ≤ 𝑀 and, to approximate 

the value of the displacement variable ( ),ru r t  and its second derivative ( ),r tu r  at 

any node and at time 𝑡, a polynomial of second order, Lagrange interpolation, shape 

functions are used, as follows: 

( ) ( ) ( ) ( ) ( )
3

1

, ,   
j jj

r rk k
k

u r t N r u r t

=

 =  
 

       (53) 

( ) ( ) ( ) ( ) ( )
3

1

, ,
j jj

r rk k
k

u r t N r u r t

=

 =  
 

       (54) 

where 
( )

,
j

r k
u r t 

 
 

 and 
( )

,
j

r k
u r t 

 
 

 are the displacement and acceleration in nodal 

description and, 
( ) ( )j
iN r , are the shape functions of second degree: 

( )
( )

( ) ( )
2 3

1 22

j j

j
r r r r

N r
l

  
− −  

  =       (55)

( )
( )

( ) ( )
1 3

2 2

j j

j
r r r r

N r
l

  
− −  

  = −       (56)

( )
( )

( ) ( )
1 2

3 22

j j

j
r r r r

N r
l

  
− −  

  =       (57) 

Where, 𝑙, is the half length of the element. 

( ) ( ) ( ) ( )
2 1 3 2

j j j j
l r r r r

   
= − = −   

   
      (58) 
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After considering the approximation using the shape functions, an approximate time 

dependent integral equation is obtained, as follows:
 

( ) ( )
( )

( )

( )
( )

( )

( )
( )

( )

( )

( ) ( ) ( )

( )
( )

( ) ( )
( )

3

1

2 1

2 1

1

1

1

3
1 1

2
1 1

2

,1
, , ,

,1
, ,

,1 1
, 2 ,

1
,

j

j

j

r o
r r o r o

o

r i
r i r i

i

rM
j jr

r rk k
j kr

r
o n n

rn n
o o r

u rn
u t u r u r t

r r

u rn
u r u r t

r r

u rn n
u r N r u r t dr

r rr

r u r
E r


 







 











= =

− 

−

 + −
 + −
 
 

 + −
 − −
 
 

  + +   + −          

−
−

 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

3 3

1 1

2 2

,

1 1
, , ,      .

j

M
j j

rk k
j k

o r o i r i i o
o i

N r u r t dr

P t u r P t u r r r
E E

 
  

= =

 

  
     

− −
= −  

 

 (59) 

Once the spatial discretization is accomplished, the obtained integral equation is 

applied to the boundary and internal nodes generating a system of algebraic equations; 

Hence, 

However, by using N collocation points, eqn. (59) is reduced to a temporal system of 

ordinary differential equations.  

These collocation points are considered as nodes and, the coordinates become: 

( ),k i or r = , ( )1, ,k N=  for the boundary nodes. 

( )( ), 2 , , 1k i i ir l r l r N l = + + + − , ( )2,3, , 1 ,k N= −  for the domain nodes. 

Thus, the resulting matrix form of the system of ordinary differential equations is 

written as follows: 

b bbb bd bb bb bd b
r r

d ddb dd db db dd dd d
r r

        +
        + =
        + +        

u uS S H G G C

u uS S H G H G C
  (60) 

The superscripts b and d are pointed to the boundary and domain nodes, respectively. 
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However, the displacements vectors are defined as follows: 

( )
( )

,

,

r ib
r

r o

u r t

u r t

 
=  

 
u         (61) 

and, its size is (2 x 1). 

( )
( )

( )( )

,

2 ,

1 ,

r i

r id
r

r i

u r l t

u r l t

u r N l t

 +
 

+ =
 
 

+ −  

u        (62) 

and, its size is ((N-2) x 1). 

Whereas, the acceleration vectors are defined as follows: 

( )
( )

,

,

r ib
r

r o

u r t

u r t

 
=  

 
u         (63) 

and, its size is (2 x 1). 

( )
( )

( )( )

,

2 ,

1 ,

r i

r id
r

r i

u r l t

u r l t

u r N l t

 +
 

+ =
 
 

+ −  

u        (64) 

and, its size is ((N-2) x 1). 

 

The system of ordinary differential equations is written in the complete form as 

follows: 
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( )

( ) ( )

( )

( )

( ) ( ) ( )

12 13 1 111 1

1 2 3 ( 1)

22 23 2 121 2

31 3 32 33 3 1

1 1 1 1 2 1 3 1 1

bdbb
NN

N NN N N N N

dddb
NN

N N

N N N N N N N

S S SS S

S S S S S

S S SS S

S S S S S

S S S S S

−

−

−

−

− − − − − −

           


  
  
  
  
  
  
  
  
      

( )

( )

( )

11

21

11

21

2 1

11 12 1 211 12

21 22 21 22 2 2

11

b

b

d

d

d
N

bd bd bd
bb bb

N

bb bb bd bd bd

N

Ur

Ur

Ur

Ur

Ur

H H H
H H

H H H H H

H

−

−

−

       
      
   
   
   

+   
   

   
   
    
    
      

 
   
   
    

 

( ) ( )

( )

( )

( ) ( ) ( )( )

11 12 1 212

21 22 21 22 2 2

2 1 2 2
2 1 2 2 2 2

11 1

1

dd dd dd
db db

N

db db dd dd dd

N

db db
dd dd dd

N N
N N N N

N

N

H H H
H

H H H H H

H H
H H H

G G

G G

−

−

− −
− − − −

 
 
 
 
 
  
   
   
  +  
   
   
   
   
   
   
    

  

( )

( ) ( )

( )

( )

( ) ( ) ( )

12 13 1 1

2 3 ( 1)

22 23 2 121 2

31 3 32 33 3 1

1 1 1 1 2 1 3 1 1

bdbb
N

NN N N N N

dddb
NN

N N

N N N N N N N

G G G

G G G

G G GG G

G G G G G

G G G G G

−

−

−

−

− − − − − −

            
 

   
  
  
  
  
  
  
  
       

( )

( )

11

21

11

21

2 1

11

21

11

21

2

b

b

d

d

d
N

b

b

d

d

N

Ur

Ur

Ur

Ur

Ur

C

C

C

C

C

−

−

 
 
 
 
 
 
 
 
 
         
        
    
    
    
    
    

    
    
    
    
       

 
 
 
 
 
 
 
 

 

  
 
  

=

1
d

 
 
 
 
  
  
  
  
  
  
  
  
  
    

 

          (65) 



33 
 

The inertia matrices, S, are as follows: 

( ) ( ) ( ) ( )

( )

( )
3

2 1

1

2 1
( )

1

3
( ) *

1

( 1)
, ,

j

j

rM
o

kn n
jo o

r

j jn n
r rk k

kE r
r u r N r u r t dr

 




−
=

−

=

 −   
=   

   
  S  (66) 

( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

2 1

1

21 2 3( )

3

,

( 1)
,

,

j
r

k j k j k j jo
rn n

o o j
r

u r t

h h h u r t
E r

u r t

  

−

 
 

−   
=      

 
 

S    (67) 

However, the boundary nodes i.e. ( ),k i or r = , ( )1,k N= , and the domain nodes i.e. 

( )( ), 2 , , 1k i i ir l r l r N l = + + + − , ( )2,3, , 1k N= − . 

Expressions of the matrices 
ijS  are: 

11 1
1 3

1
1 3

,

M
bb

o N NM

h h
C

h h

 
 =
  

S        (68) 

( )

( )

1 111 11 12 1 1
2 3 1 1 23

11 1 2
2 3 1 1 23

,

M M M
bd

o N MN N N NM NM

h h h h h h
C

h h h h h h

−

−

 + +
 =
 

+ + 

S   (69)

( ) ( )

21 2
1 3

31 3
1 3

1 1 1
1 3

,

M

M
db

o

N N M

h h

h h
C

h h
− −

 
 
 

=  
 
 
  

S

      (70)

 

( )

( )

( ) ( ) ( ) ( )( ) ( ) ( )

2 121 21 22 2 2
2 3 1 1 23

3 131 31 32 3 3
2 3 1 1 23

1 1 1 1 1 2 1 1 1 1

2 3 1 3 1 2

,

M M M

M M M
dd

o

N N N N M N M N M

h h h h h h

h h h h h h
C

h h h h h h

−

−

− − − − − − −

 + +
 
 

+ + =
 
 
 + + 

S

          (71) 

( )
( )2 1

2 1
,

o

o n n
o o

C
E r

 

−

−
=         (72) 
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where ij

kh  are defined in the Appendix. Sizes of the matrices ,bb
S  ,bd

S  ,db
S  and 

ddS  

are respectively, 2 2,  ( )2 2 ,N −  ( )2 2,N −   and ( ) ( )2 2 .N N−  −  

bbH    and  bd
H  are sub-matrices of the boundary conditions and, they are related to 

the boundary points, whereas the sub-matrix  dd
H  is related to the internal nodes. 

However, the matrices 
ij

H  are given by: 

( )
( )

( )
( )

( )

1

1

,1
2 ,

,
,1

, 0

r o i
r o i

obb

r i o
r i o

i

du r rn
u r r

r dr

du r rn
u r r

r dr











 + −
− 

 
=  

− + +
  

H (73) 

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )

2 21 1
2 2

1 11 1
1 1

, ,1 1
, ,

,

, ,1 1
, ,

r i r o
r i r o

i o

db

r i N r o N
r i N r o N

i o

du r du rn n
u r u r

r dr r dr

du r du rn n
u r u r

r dr r dr

  
 

  
 

 
 

 
− − 

− −

 − + + −
+ − 

 
 =
 
 − + + −

+ − 
  

H

          (74) 

1 0 0

0 1 0
,

0 0 1

dd

 
 
 =
 
 
 

H        (75) 

where the matrices ,  ,bb db
H H  and 

dd
H  are of sizes ( )2 2 ,  ( )2 2,N −   and 

( ) ( )2 2 ,N N−  −  respectively. 

The following domain integrals are numerically solved as follows: 

( )
( ) ( )

( )
( )

( )

( )
3

1

* 3
*1 1

2
1 1

,1 1
, 2 ,

j

j

rM
j jr k

r rk k
j k

r

u rn n
u r N r u r t dr

r rr




= =

   + +    = −   
      

 G  

          (76) 

Where, 
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( ) ( )
( )

( )

( )

( )
3 3

*1
2

1 1
1

1
, ,

j

j

r
M

j j
r k rk k

j k

n
u r N r u r t dr

r
r



= =

 +    
=    

     
 1G    (77) 

( ) ( ) ( ) ( )( )
*3 3

1

1 1
1

,1
2 ,

j
r

M
j jr

k r k
jj kr

u rn
N r u r t dr

r r



= =

 +  
=       

 2G   (78) 

1 2= +G G G          (79) 

The matrices 
ijG , produced by domain integral equation, are expressed as follows: 

11 11 1 1
1 1 3 3

1 1 1
1 1 3 3

2 2
,

2 2

M M
bb

N N NM NM

m b m b
C

m b m b

 + +
=  

+ +  

G      (80) 

( ) ( )

( ) ( )

1 1 1 111 11
3 311 11 1 13 3

2 2 2 212 12 1 1
1 1 1 1

1
1 11 1

3 31 1 3 3
2 2 2 22 2

1 1 1 1

( 2 ( 2
2 2

2 ) 2 )
,

( 2 ( 2
2 2

2 ) 2 )

M M
M M

M M
bd

N M N MN N
N N NM NM

N N NM NM

m b m b
m b m b

m b m b
C

m b m b
m b m b

m b m b

− −

− −

 + +
 + +
 + + + +

=  
 + +

+ + 
+ + + +  

G

          (81) 

( ) ( ) ( ) ( )

21 21 2 2
1 1 3 3

31 31 3 3
1 1 3 3

1

1 1 1 1 1 1

1 1 3 3

2 2

2 2
,

2 2

M M

M M
db

N N N M N M

m b m b

m b m b
C

m b m b
− − − −

 + +
 

+ + 
=  

 
 + + 

G     (82) 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

21 21 2 1 2 1

3 3 3 321 21 2 2

2 2 2 222 22 2 2
1 1 1 1

31 31 3 1 3 1

3 3 3 331 31 3 3

2 2 2 232 32 3 3
1 1 1 1 1

1 1 1 1

3 31 1 1 1

2 2 1 2 1 2

1 1

( 2 ( 2
2 2

2 ) 2 )

( 2 ( 2
2 2

2 ) 2 )

( 2 (
2

2 )

M M

M M

M M

M M

M M

dd M M

N N

N N

N N

m b m b
m b m b

m b m b

m b m b
m b m b

C m b m b

m b
m b

m b

− −

− −

− −

− −

− −

+ +
+ +

+ + + +

+ +
+ +

= + + + +

+
+

+ +

G

( )( ) ( )( )

( ) ( )

( ) ( )
1 1 1 1

3 3 1 1

2 21 1

1 1

,

2
2

2 )

N M N M

N M N M

N M N M

m b
m b

m b

− − − −

− −

− −

 
 
 
 
 
 
 
 
 

+ 
+ 

+ + 

          (83) 
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where 1 1 1.C n= +  The matrices ,bb
G  ,bd

G  ,db
G  and 

dd
G  are of sizes 2 2,  

( )2 2 ,N −  ( )2 2,N −   and ( ) ( )2 2 .N N−  −   

The expressions of jk

im  and jk

ib are provided in the Appendix. 

 

Moreover, the right-hand side load vectors b
C  and d

C  are found as: 

( ) ( )

( ) ( )

2

2

1
,

,
1

,

r i o i
ib

r o i o
o

u r r P t
E

u r r P t
E









 −
− 

 =
 −
 
  

C       (84)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2 2

3 3

2 2

1 1

1 1
, ,

1 1
, ,

.

1 1
, ,

r i i r o o
i o

r i i r o od
i o

r i N i r o N o
i o

u r P t u r P t
E E

u r P t u r P t
E E

u r P t u r P t
E E

 
 

 
 

 
 

 

 

 
− −

 − −
− + 

 
 − −
 − +

=  
 
 
 − −
− + 

  

C   (85) 
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3.3.1 Time Marching with the Houbolt Method 

Houbolt’s method is utilized as a time marching in the numerical solution of the 

temporal system of ordinary differential equations stated by Eq. (60). The method is 

implicit, unconditionally stable; and built on the cubic Lagrange interpolation of the 

temporal variable ( ),ru r t  from time 2 2mt t− =   to time ( )1 1mt m t+ = +   [43].  

In Houbolt’s time marching scheme, the velocity and acceleration are given by the 

following formulae: 

( ) ( )1 1 1 2

1
11 18 9 2 ,

6m m m m mr r r r ru t u u u u
t+ + − −

= − + −


     (86) 

( )
( )

( )1 1 1 22

1
2 5 4 .

m m m m mr r r r ru t u u u u
t

+ + − −
= − + −


     (87) 

Using these formulas in combination with eqn. (60) will result in: 

( )

1

1

1

2
1

1
,

m

m

b
bbb bd bb bd b

r m

ddb dd d db dd d
mr

t

+

+

+

+

        
        − =
                

u gA A S S C

gA A u S S C
   (88) 

( )
2

2
,bb bb bb bb

t
= + −


A H G S       (89) 

( )
2

2
,bd bd bd

t
= −


A G S        (90) 

( )
2

2
,db db db db

t
= + −


A H G S       (91) 

( )
2

2
.dd dd dd dd

t
= + −


A H G S       (92) 

The vectors 1

b

m+g  and 1

d

m+g  are expressed as: 

( ) ( ) ( )
( ) ( ) ( )

1 2
1

1 2

5 , 4 , ,
,

5 , 4 , ,

r i m r i m r i mb
m

r o m r o m r o m

u r t u r t u r t

u r t u r t u r t

− −
+

− −

 − + −
=  

− + − 
g    (93) 

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )

1 2

1 2
1

1 2

5 , 4 , ,

5 2 , 4 2 , 2 ,
.

5 1 , 4 1 , 1 ,

r i m r i m r i m

r i m r i m r i md
m

r i m r i m r i m

u r l t u r l t u r l t

u r l t u r l t u r l t

u r N l t u r N l t u r N l t

− −

− −
+

− −

 − + + + − +
 

− + + + − + =
 
 
− + − + + − − + −  

g

          (94) 
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Obviously, the time marching using Houbolt’s method requires the calculations of 

1ru
−

 and 
2ru

−
 to start the computations for each time step.  

Therefore, to determine 𝑢𝑟−1
, 𝑢̇𝑟0

 is computed using the forward and backward finite 

difference at time 0t =  

101 0

0

r r r r
r

u u u u
u

t t
−

− −
= =

 
      (95) 

Then from eqn. (95), we get: 

1 0 1
2 ,r r ru u u

−
= −         (96) 

Similarly, to determine 𝑢𝑟−2
 , 𝑢̇𝑟−1

 is computed using the forward and backward finite 

difference at time t t= −  

0 1 1 2

1

r r r r
r

u u u u
u

t t

− − −

−

− −
= =

 
      (97) 

Then from eqn. (97), we get: 

2 1 0
2r r ru u u

− −
= −         (98) 

Therefore, substituting eqn. (95) into eqn. (97), we get: 

( )2 0 1 0 0 1
2 2 3 2r r r r r ru u u u u u

−
− = −= −      (99) 

Moreover, when the radial displacement is calculated as a function of time, the 

distributions of radial and circumferential stresses are calculated by using the 

constitutive relations. This computation needs the calculation of the r - derivative of 

the radial displacement, .ru  Thus, the required r - derivatives are determined by the 

use of the finite difference method. 
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For the radial stress: 
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For the calculation of the derivatives of the radial displacement (radial strain), the finite 

difference is used. The radial strain of boundary points is found by forward and 

backward difference for the inner radius and outer radius, respectively. Whereas for 

the domain nodes; the central difference is performed to find the radial strain, as 

follows: 
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   (102) 

Where, 

( )2,3, , 1k N= − , for the domain nodes. 
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For the tangential (hoop) stress: 
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          (104) 

The calculation of the radial strain is the same as in eqn. (102). 
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CHAPTER 4 

VERIFICATION OF THE METHOD 

 

 

 

4.1 First Comparison 

To validate the numerical solution developed by D-BEM, a functionally graded 

material thick-walled cylinder with the inner radius 𝑟𝑖 and outer radius 𝑟𝑜, as shown in 

fig. (6), is subjected to different uniformly-distributed dynamic pressures at the inner 

boundary surface, in order to compare it to the work of Nikkhah et al. [24]. 

rP2 (t)

P1 (t)

ro

ri

 

Figure 6: Cross-section of the FGM thick-walled cylinder with the boundary conditions. 

The material properties of the cylinder vary through the thickness according to the 

power law volume fraction function eqn. (1). 

However, Poisson’s ratio is considered to be constant, 𝜈 = 0.3. For controlling the 

material properties of the FGM cylinder through the thickness, the exponents of the 
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power law function for the modulus of elasticity and the mass density are considered 

as follows: 

( ) ( ) 21 ,/ /o
n

o o
n

oE E r r r r = =      (105) 

The boundary and initial conditions of the thick-walled FGM cylinder are expressed 

as: ( ) ( ) ( ) ( )1 2, , , .r i r or t P t r t P t = − = −      (106)  

( ) ( ) ( ) ( ),0 0, ,0 0.
o or r r ru r u r u r u r= = = =     (107) 

Where, 𝜎𝑟(𝑟, 𝑡), 𝑢𝑟0
(𝑟)  and 𝑉𝑟0

(𝑟) are the radial stress, the initial radial displacement, 

and the initial radial velocity, respectively. 

The FGM thick-walled cylinder geometry and, mechanical properties are proposed, as 

shown in table (1). 

Property Inner Edge Outer Edge 

First Comparison 

Material Aluminum Ceramic Alumina 

Radius (m) 𝑟𝑖 = 1 𝑟𝑜 = 1.2 

Elastic Modulus, 𝐸(𝐺𝑃𝑎) 70 380 

Density, 𝜌 (
𝑘𝑔

𝑚3) 2700 3800 

Poisson Ratio, 𝜈 0.3 0.3 

Table 1: Thick-walled cylinder geometry and mechanical properties [24].  
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4.1.1  Dynamic Loadings 

The studied FGM thick-walled cylinder is subjected to various internal dynamic 

pressures, as follows:  

1. The inner surface of the FGM cylinder is subjected to a uniformly-distributed 

short-time ramp pressure, figure (7), which can be expressed as: 

( )

( )

*
0

0

2

1

      0
,
                 0

0

P t t t
P t and

t t

P t

  
= 



=

     (108) 

Where, 𝑃∗ and 𝑡0 are taken as 4 𝐺𝑃𝑎/𝑠 and  0.005 𝑠, respectively. 

 

Figure 7: The variation of the internal ramp pressure with time proposed. 

 

2. The inner boundary surface is subjected to an exponential dynamic pressure 

imposed uniformly, as shown in figure (8). The non-dimensional time histories 

of the imposed pressures at the inner and outer boundary surfaces can be 

expressed as: 
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( ) ( )
( )2

1 0

0

0. 01 1 ,oC
P e and

P





−
−

=

=
      (109) 

Where, 𝐶𝑜 is a constant equal to 0.1, and the following non-dimensional parameters 

are introduced: 

10, , .v
v

o o

C Cu
u and C

r r 




= = =       (110) 

Where, 𝐶10 = 511.54 𝐺𝑃𝑎  

 

Figure 8: The variation of the internal non-dimensional exponential pressure with non-

dimensional time proposed for verification. 

4.1.1.1 Ramp Dynamic Loading Results and Comparison 

Time histories of the radial displacement at the middle point of the thickness for 

various values of power law exponents are calculated and, a comparison is made for 

each case with the results obtained by using D-BEM method, as shown in figures (9, 

10 and 11). However, all the results obtained, with various material indices, by D-

BEM are plotted in figure (12) to show the effect of the material property index. 
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Figure 9: Time history of radial displacement at midpoint with 𝑛1 = 𝑛2 = 0.5. 

 

Figure 10: Time history of radial displacement at midpoint with 𝑛1 = 𝑛2 = 5. 
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Figure 11: Time history of radial displacement at midpoint with 𝑛1 = 9.29, 𝑛2 = 1.86. 

 

Figure 12: Time history of radial displacement at midpoint with different material property 

indices by using D-BEM. 

Furthermore, circumferential stress result at midpoint for material property exponents 

 has been calculated and compared to the results obtained from the 1 2 5.0.n n= =
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research work of Nikkhah et al. [24]. It is clearly evident that the results obtained by 

using D-BEM are congruent with the compared ones, as shown in figure (13). 

 

Figure 13: Time history of circumferential stress at midpoint with  

  

1 2 5.0.n n= =
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4.1.1.2 Exponential Dynamic Loading Results and Comparison 

Using an exponential non-dimensional dynamic pressure imposed uniformly at the 

inner boundary surface of the FGM thick-walled cylinder with inner radius 𝑟𝑖 = 1.0 

and outer radius of the cylinder  𝑟𝑜 = 1.5. 

Time histories of the non-dimensional radial displacement at the middle point of 

thickness of the thick-walled hollow FGM cylinder with material properties index, 

1 2 0.5n n= = ,  are obtained using D-BEM and compared to the results of reference paper 

Nikkhah et al. [24], as shown in figures (14). The result obtained shows a consistency 

with those of the reference. 

 

Figure 14: Time history of non-dimensional radial displacement at midpoint with 

1 2 0.5n n= =  
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4.2 Second Comparison 

This study is to investigate the exact free and forced vibrations behavior of FGM thick-

walled cylinders under dynamic internal pressure, Keles and Tutuncu [57]. 

Consider a thick-walled hollow cylinder of inner radius, 𝑎, and outer radius, 𝑘𝑎, where 

𝑘 is a constant, figure (15). 

 

Figure 15: Schematic diagram of the boundary conditions and geometry of FGM thick-

walled cylinder 

 

4.2.1 Formulation of the problem 

A different formulation is used here to study the dynamic response of the FGM thick-

walled cylinder. Under axisymmetric conditions the strain-displacement relations in 

polar coordinates are found by equations (11 and 12). 

However, the constitutive linear relations are: 

1 1
rr rr

E E



  

  
= +

− −
       (111)

1 1
rr

E E
 


  

  
= +

− −
       (112) 

Or,  

11 12rr rrC C   = +         (113)

12 22rrC C   = +        (114) 

Where, 

P (t)

k a

a
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C11 and C22 refer to stiffness in the radial and circumferential directions, respectively 

whereas, C12 includes the Poisson's ratio effect. 

Thus, for the axisymmetric non-rotating problem, the elasto-dynamic equation of 

motion is as follows: 

( )2

2

,rrrrr
u r t

r r t

 


−
+ =

 
      (115) 

Substituting the stresses and the strain relations and simplifying, the governing 

elastodynamic equation of motion becomes: 

2 22
2

1 22 2 2
r r r

r
u u ur

r rm m u
rr C t

  
+ + =

 
     (116) 

Where, 

2 11C
C


=          (117) 

( )1 21, 1
1

m m





= + = −
−

       (118) 

 : The material density. 

Two cases are considered for the comparison with this reference work. The first case, 

the value of   is taken to be zero. 

Thus, 

1 21, 1m m= = −         (119) 

Hence, substituting eqn. (119) in eqn. (116), the governing equation of motion resulted 

is the same as the one obtained in the Research Methodology chapter eqn. (20) for the 

homogenous case. 

The second case, the value of   is taken as 2. This is the same as considering the 

material exponents 1 2 2.0n n= =  in eqn. (20). 

The boundary conditions, with inner dynamic exponential pressure 𝑃(𝑡), are as 

follows: 

𝜎𝑟𝑟|𝑟=𝑎 = −𝑃(𝑡)   𝜎𝑟𝑟|𝑟=𝑘𝑎 = 0 
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4.2.2 Dynamic loadings 

The non-dimensional exponential loading is used in this comparison: 

( ) ( ) ( )2 1oP P P e   −= = −        (120) 

Where, 

ir

Ct

u
 =          (121) 

( )

( )( )11

1
,

1 1 2

oE
C



 

−
=

+ −
        (122) 

1.0 =          (123) 

The elastodynamic analysis is performed using D-BEM. The domain is divided into 

20 isoparametric cells and the time step used for time marching by Houblt’s method is 

51 10t − =  . The obtained dimensionless radial displacement at the inner surface, for 

both cases are plotted in figure (16) for comparison and, it shows a good consistency 

with the analytical solution developed by Keles and Tutuncu [50]. 

 

Figure 16: Comparisons of normalized radial displacements to the results given by Keles and 

Tütüncü [57] for 0& 2.0 = .
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CHAPTER 5 

NUMERICAL RESULTS 

 

 

 

5.1 Composite thick-walled cylinder in plane stress condition. 

 

Figure 17: Composite thick-walled hollow cylinder under pressure shock loads 

The composite thick-walled cylinder in plane stress is considered to validate the 

numerical solution obtained by using the D-BEM, as shown in figure (17). The domain 

is divided into M elements equals to 20 elements; that is 41 nodes, N. However, for 

the homogeneous part (Material I), the material indices, and are equal, whereas 

for the FGM part (Material II), the material indices are:  and . 

Since the formulation is carried out in plane stress, thus; the Poisson’s ratio and the 

elasticity modulus are as follows: 

( ) ( )E r E r and  = =        (124) 

1n 2n

1 9.27n = 2 1.87n =

ri 

r1 

ro 

Po(t) 

Pi(t) 

r 

 

Material II 

Material I 



54 
 

Therefore, the composite thick-walled cylinder geometry and, mechanical properties 

are proposed, as shown in table (2). 

Material I Aluminium 

Radius (m) 𝑟𝑖 = 1 

Elastic Modulus, 𝐸̅(𝐺𝑃𝑎) 70 

Density, 𝜌 (
𝑘𝑔

𝑚3) 2700 

Material II Aluminum Ceramic Alumina 

Radius (m) 𝑟1 = 1.25 𝑟𝑜 = 1.5 

Elastic Modulus, 𝐸̅(𝐺𝑃𝑎) 70 380 

Density, 𝜌 (
𝑘𝑔

𝑚3) 2700 3800 

Poisson Ratio, 𝜈̅ 0.3 0.3 

Table 2: Composite thick-walled cylinder geometry and mechanical properties - plane stress 

In this study, the composite hollow cylinder is subjected to uniformly-distributed 

internal shock ramp pressure as expressed in eqn. (108). 

5.1.1 Radial displacement response results for plane stress 

Different important points, along the depth of the wall, have been selected to show the 

radial response of the composite thick-walled cylinder under the ramp pressure shock 

applied. Therefore, the radial displacement response has been calculated for a time 

period of 0.01 second at the following positions: 

1. Quarter depth point, at radius equals to 1.125 m. 

2. At radius equals to 1.2 m. 

3. Midpoint depth point, at radius equals to 1.25 m. 

4. At radius equals to 1.3 m. 

5. Three quarter depth point, at radius equals to 1.375 m. 

For plane stress, the comparison of all the radial displacement responses at the 

positions selected above has been plotted, as shown in figure (18). 
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Figure 18: Comparison of various time history of radial displacement at different radii with 

𝑛1 = 9.27 & 𝑛2 = 1.87. 

5.1.2 Radial and circumferential stresses calculations for plane stress 

To calculate the radial and hoop stresses, the displacement form of the constitutive 

equations is used: 

For the radial stress: 

For the tangential (hoop) stress: 

5.1.2.1 Radial stress results for plane stress 

Different positions at the wall thickness of the cylinder has been selected (quarter 

point, midpoint and ¾ point of the thickness). The radial stress responses at these 

selected points for a time period of 0.01s have been plotted in figure (19). 
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Figure 19: Comparison of radial stress at various points of wall thickness 

5.1.2.2 Hoop stress results for plane stress 

Similarly, the responses of circumferential stress at the same selected points at the wall 

thickness have been plotted in figure (20) for the same time period of 0.01s. 

 

Figure 20: Comparison of hoop stress at various points of wall thickness  
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5.2 Composite thick-walled cylinder in plane strain condition –First 

case study 

Similarly, the domain of the thick-walled cylinder is divided into M elements equal to 

20 elements; that is 41 nodes. To validate the numerical solution obtained in plane 

strain condition by using the D-BEM, the solution of the homogeneous part (Material 

I) including the inner boundary term, 1r r , is found by equating the material property 

indices: 1 2n n=  and ( ) ( )&i iE r E r = = . Whereas, for the FGM part (Material II) 

including the outer boundary term, 1r r , the solution can be obtained by putting 

1 9.27n =  and 2 1.87n =  in the integral equation.  

For plane strain, the Composite thick-walled cylinder geometry and, mechanical 

properties are proposed, as shown in table (3). 

Material I Aluminium 

Radius (m) 𝑟𝑖 = 1.0 

Elastic Modulus, 𝐸̅(𝐺𝑃𝑎) 76.92 

Density, 𝜌 (
𝑘𝑔

𝑚3) 2700 

Material II Aluminum Ceramic Alumina 

Radius (m) 𝑟1 = 1.25 𝑟𝑜 = 1.5 

Elastic Modulus, 𝐸̅(𝐺𝑃𝑎) 76.92 417 

Density, 𝜌 (
𝑘𝑔

𝑚3) 2700 3800 

Poisson Ratio, 𝜈̅ 0.428 0.428 

Table 3: Composite thick-walled cylinder geometry and mechanical properties -plane strain. 

For the plane strain, we can get the elasticity modulus ( )E r  and Poisson’s ratio , as 

follows:  

( )
2 1

( ) ,
1

E r
E r





==

− −
       (125) 

So that for the inner radius, 𝑟𝑖 = 1𝑚: 

𝐸̅𝑖 =
𝐸𝑖

1−𝜈2 =
70

1−0.32 = 76.92 𝐺𝑃𝑎  
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𝜈̅ =
𝜈

1−𝜈
=

0.3

1−0.3
= 0.428  

And using the material index, 1 9.27n = , we get the elasticity for the outer surface as 

follows:  

𝐸̅𝑜 =
𝐸𝑖̅

(𝑟𝑖 𝑟𝑜⁄ )𝑛1  
=

76.92

(1.25 1.5⁄ )9.27
= 417 𝐺𝑃𝑎  

The studied composite thick-walled cylinder is subjected to an internal ramp pressure 

shock as expressed in eqn. (108). 
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5.2.1 Radial displacement response results for plane strain 

As in the plane stress condition, different important points have been selected to show 

the radial displacement responses of the composite thick-walled cylinder. The ramp 

pressure shock is applied for a time period of 0.01 second at the following points: 

1. Quarter depth point, at radius equals to 1.125 m. 

2. At radius equals to 1.2 m. 

3. Midpoint depth point, at radius equals to 1.25 m. 

4. At radius equals to 1.3 m. 

5. Three quarter depth point, at radius equals to 1.375 m. 

For plane strain, the obtained radial displacement response for each of the selected 

points has been plotted, as shown in fig. (21). 

 

Figure 21: Comparison of various time history of radial displacement at different radii with 

𝑛1 = 9.27 & 𝑛2 = 1.87. 
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5.2.2 Radial and circumferential stresses calculations for plane strain 

Similarly, the radial and hoop stresses are calculated from the same equations (26 & 

29) obtained in plane stress condition with the use of the appropriate values of 

Poisson’s ratio and elasticity modulus listed in table (4). 

The derivatives of the radial displacement (radial strain) are found by using the finite 

difference, as shown in eqn. (102).  

5.2.2.1 Radial stress results for plane strain 

Three different points along the thickness of the wall are selected to make the 

comparison (quarter point, midpoint and three-quarter point of wall’s thickness). For 

the same ramp pressure shock, the radial stress responses are plotted along the time 

interval of 0.01 second, as shown in fig. (22). 

 

Figure 22: Comparison of Radial Stress at Various Points of Wall Thickness 
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5.2.2.2 Hoop stress results for plane strain 

In the same way, the responses of the circumferential stress at the same selected points 

along the thickness of the wall are calculated and plotted for comparison, as shown in 

fig. (23). 

 

Figure 23: Comparison of Hoop Stress at Various Points of Wall Thickness. 
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5.3 FGM thick-walled cylinder in plane strain condition – Second 

case study 

 

Figure 24: FGM thick-walled hollow cylinder under pressure shock loads 

 

The FGM thick-walled cylinder under the effect of pressure shock type of loading is 

considered in this case study is illustrated in fig. (24). Two different loading conditions 

are taken to study the effect of ramp pressure shock. 

5.3.1 The pressure loading on the inner surface of the cylinder 

On the inner surface, uniformly distributed variable shock pressure ( )iP t of ramp type 

that is given by eqn. (108). But, there is no external pressure applied, i.e., ( ) 0.oP t =  

In all the computations, the thick-walled cylinder is assumed to be in the plane strain 

state. The elastic modulus and the material density are varying according to the 

relations given by eqn. (126).  

( ) ( )
1 2

,       ,

n n

o o

o o

r r
E r E r

r r
 

   
= =   

   
     (126) 

In addition, inner and outer radii of the cylinder are 1 mir =  and 1.2 mor = , 

respectively. The outer surface at or r=  is considered Ceramic alumina with 

ri 

ro 

Po(t) 

Pi(t) 

r 

 
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380 GPaoE =  and 
33800 kg/m .o = However, Poisson’s ratio is considered constant, 

𝜈 = 0.3. The normalized parameters used for the illustration are defined as: 

0 0 ,p t =    0
0 .o

o

u r
E


=        (127) 

The time response of the normalized radial displacement and normalized stress 

components, 0 ,ru u  0 ,rr   and 0 ,   at the midpoint, ( ) 2.i or r r= +  are plotted 

in figures (25, 26 and 27), respectively. The domain is divided into 20 quadratic 

elements and, the time step used in the execution of the Houbolt’s method is 
51 10  s.−  

The radial displacement, ru , behavior follows the ramp type shock loading until the 

time, 0.t t=  At the cut-off time, the cylinder is unloaded, and the location studied at 

the midpoint begins to experience oscillatory motion. As the material indices 1n  and 

2n  are decreased from 0.5 to 1.0− , the displacement amplitude is getting smaller. This 

means that when 0in  , the material properties increase in r- direction, whereas when 

0in  , they are decreasing function of r. Moreover, the vibration amplitudes and 

magnitudes of radial and circumferential stresses also become lesser as the material 

indices 1n  and 2n  are decreased from 0.5 to 1.0.−   

 

Figure 25: Dimensionless radial displacement at the mid-point, ( ) 2,i or r r= +  of an FGM 

cylinder under internal pressure shock. 
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Therefore, it can be concluded that, as long as the material property values at the outer 

surface, or r= , are constant, midpoint stress components magnitudes calculated by 

considering the decrease of material properties are less than those determined with the 

increase physical properties. 

 

Figure 26: Dimensionless radial stress at the mid-point, ( ) 2,i or r r= +  of an FGM cylinder 

under internal pressure shock. 

 

Figure 27: Dimensionless tangential stress at the mid-point, ( ) 2,i or r r= +  of an FGM 

cylinder under internal pressure shock. 
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For further investigation, a point closer to the inner surface of the FGM thick-walled 

cylinder is considered. This point is taken as ( ) 10.c i o ir r r r= + −  The time histories of  

dimensionless radial displacements, dimensionless radial stress and tangential stresses 

at various material property indices are plotted for comparison, as shown in figures 

(28, 29 and 30). Displacement amplitude and vibration amplitudes of stresses get 

smaller as 1n  and 2n  are decreased from 0.5 to 1.0.− But, as observed the vibrations 

have a time lag behaviour. The amplitudes of radial displacement as well as the radial 

stress are larger than those obtained at the midpoint of thickness.  

 

Figure 28: Dimensionless radial displacement at point, ( ) 10.c i o ir r r r= + − of an FGM 

cylinder under internal pressure shock. 
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Figure 29: Dimensionless radial stress at point, ( ) 10.c i o ir r r r= + − of an FGM cylinder 

under internal pressure shock. 

 

Figure 30: Dimensionless tangential stress at point, ( ) 10.c i o ir r r r= + − of an FGM 

cylinder under internal pressure shock. 
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Another important factor which has a significant effect on the elastodynamic response 

of FGM cylinders is the radius ratio of the cylinder, .o ir r  Different outer radii of the 

cylinder are used to study this factor. Material  property exponents 
1n  and 

2n  are taken 

as 1,−  and the inner radius of the cylinder, ,ir  is taken as 0.1 m.  However, the 

responses of the non-dimesional radial displacement, radial and tangential stresses at 

the midpoint of wall thickness are plotted at various radius ratio, as shown in figures 

(31, 32 and 33). It is obvious that the amplitudes of radial displacement and stresses 

are decreased with the increase ratio .o ir r Moreover, the behavior of stress vibrations 

at the midpoint has a different pattern and this could be due to the high stiffness of the 

material.  

 

 Figure 31: Dimensionless radial displacement response at different   for an FGM 

cylinder under internal pressure shock at 𝑛1 = 𝑛2 = −1. 

o ir r
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Figure 32: Dimensionless radial stress response at different   for an FGM cylinder 

under internal pressure shock at 𝑛1 = 𝑛2 = −1. 

 

Figure 33: Dimensionless tangential stress response at different   for an FGM 

cylinder under internal pressure shock at 𝑛1 = 𝑛2 = −1. 

 

 

 

o ir r

o ir r
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Furthermore, another set of results are obtained for the same ratios of the outer radii 

of the cylinder, but with different material property exponents 
1n  and 

2n , which are 

taken as 0.5, and the inner radius of the cylinder, ,ir  is taken as 0.1 m. This means the 

material at midpoint is less stiff with increasing the outer radius. The vibration 

response of the radial displacement, radial stress and tangential stresses are plotted for 

the various radii ratios, .o ir r as shown in figures (34, 35 and 36). Obviously, the 

amplitudes of the vibration waves increase with the decrease of the radii ratio .o ir r  

As the material becomes less stiff at the midpoint of thickness, the behavior of 

vibration is becoming more harmonic and single peeks are present as compared to the 

last case when the material is more stiff with 𝑛1 = 𝑛2 = −1. 

 

 

Figure 34: Dimensionless radial displacement response at different   for an FGM 

cylinder under internal pressure shock at 𝑛1 = 𝑛2 = 0.5. 

 

o ir r
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Figure 35: Dimensionless radial stress response at different   for an FGM cylinder 

under internal pressure shock at 𝑛1 = 𝑛2 = 0.5. 

 

Figure 36: : Dimensionless tangential stress response at different   for an FGM 

cylinder under internal pressure shock at 𝑛1 = 𝑛2 = 0.5. 

 

 

o ir r

o ir r
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The spatial radial displacement, radial stress and tangential stress as functions of ir r  

for 0t t=  are shown in figures (37, 38 and 39), respectively. However, the radial 

displacement is positive for all the material indices  1n  and 2n  values used in the 

calculations, and decrease in the r-direction. The normalized radial stress component, 

0rr   is compressive at 0t t= , and its normalized value changes from 1−  at  the 

inner surface, ir r= , to 0 at the outer free surface, ,or r=  which is in agreement with 

the stress boundary conditions. On the other side, circumferential stress is in tension 

and the overall trend rely on the material property exponents 1n  and 2n , which means 

when the material indices are zero or positive, the normalized tangential stress, 0   

is increasing r-direction. However, in case of the negative exponents, the normalized 

tangential stress is decreasing in the radial direction. 

 

Figure 37: Dimensionless spatial radial displacement computed at 0 0.005 st t= =  

considering an FGM cylinder under internal pressure shock. 
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Figure 38: Dimensionless spatial radial stress computed at 0 0.005 st t= =  considering an 

FGM cylinder under internal pressure shock. 

 

Figure 39: Dimensionless spatial tangential stress computed at 0 0.005 st t= =  considering 

an FGM cylinder under internal pressure shock. 
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5.3.1.1 Parametric analysis of stress concentration related to circumferential stress 

To make this parametric analysis, the maximum absolute tangential stress is divided 

by the stress at the cut off time, 0t , which is 0max  . Hence, three different 

temporal points are selected 
0 0 00.5 , &1.08t t t and four material exponents 

1 2 0.5,0.0, 0.5& 1.0n n n= = = − − . Therefore, the magnitude of the maximum 

circumferential stress and the location, normalized radial coordinates, of the stress 

concentration points are tabulated in tables (4 and 5), respectively. 

N 
  

0.5 1.00 1.08 

0.5 0.476 1.015 1.002 

0.0 0.355 0.753 0.697 

  0.108 0.248 0.379 

  0.113 0.244 0.250 

Table 4:  values for an FGM thick-walled cylinder under internal pressure shock, 

   

 

n 
  

0.5 1.00 1.08 

0.5 2.00 2.00 2.00 

0.0 2.00 2.00 1.55 

  2.00 1.00 1.55 

  1.00 1.00 1.00 

Table 5:  values corresponding to largest circumferential stress amplitudes for an FGM 

thick-walled cylinder under internal pressure shock,    

From the tables above, the stress concentration is more when the material property exponent 

equals to 0.5, and it occurs at the outer surface. Whereas, when the material exponents are 

negative the stress concentration, ,  is less as compared to the results obtained for 

positive material exponents. Moreover, the maximum stress concentration mostly happens at 

either the inner edge or the outer edge of the thick-walled cylinder depending on the material 

property exponent used.  

  

0t t

0.5−

1.0−

0max 

0.1 m,ir = 0.2 m,or = 1 2 .n n n= =

0t t

0.5−

1.0−

ir r

0.1 m,ir = 0.2 m,or = 1 2 .n n n= =

0max 
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5.3.2 The pressure loading on the outer surface of the cylinder 

The thick-walled FGM cylinder under effect of the external pressure ( )oP t is studied. 

The cylinder geometry and the pressure loading are shown in Fig. (1). However, the 

internal pressure is considered to be zero; whereas the outer edge pressure shock is 

defined as the short-time ramp loading: 

( )
*

0

0

, 0 ,

0, ,
o

p t t t
P t

t t

  
= 


        (128) 

Where; p  and 0t  are 4 GPa/s  and 0.005 s, respectively.  

The outer surface of the thick-walled cylinder is considered 100% alumina. However, 

the material properties formulas and the dimensions of the cylinder are precisely the 

same as the one used in the calculation of the inner loading condition studied in the 

last section. In addition, the normalized parameters are given by Eq. (127).  

The numerical results obtained are plotted in figures (40, 41 and 42), which show the 

response of the radial displacement and stress components (radial and circumferential) 

at the midpoint of wall thickness, ( ) 2,i or r r= + for different values of the material 

property exponents  1 2 0.5,0, 0.5, 1.0n n= = − − . 

However, the radial displacement at the midpoint of the cylinder’s wall thickness 

initially varies in the negative r-direction because of the application of pressure shock 

on the outer surface. The resulted vibration motion got the highest amplitudes of 

vibration for the radial displacement and the stress components when calculated at 

material property exponents 1 2 0.5.n n= =  But, the amplitudes are getting smaller 

when the exponents 1n  and 2n  are reduced from 0.5 to 1.0.−  Thus, the general trend 

of the vibrations resulted in the case of applying external pressure shock is similar to 

that obtained for the same internal ramp shock loading. This means that decreasing 

physical properties will lower the magnitudes of vibrations. 
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Figure 40: Dimensionless radial displacement at the mid-point, ( ) 2,i or r r= +  of a FGM 

cylinder under external pressure shock. 

 

Figure 41: Dimensionless radial stress at the mid-point, ( ) 2,i or r r= +  of a FGM cylinder 

under external pressure shock. 
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Figure 42: Dimensionless tangential stress at the mid-point, ( ) 2,i or r r= +  of a FGM 

cylinder under external pressure shock. 

 

However, spatial distributions computed at 0t t= for radial dispalcement, radial stress 

and tangential stress are shown in figures (43, 44 and 45), respectively. At the selected 

cut-off time, the radial spatial displacements are decreasing in the radial direction r. 

Though, the radial stress component is compressive and satisfies the stress boundary 

conditions at both edges, and the circumferential stress component is found to be 

positive for all the suggested values of material property exponents, 1n  and 2.n   
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Figure 43: Dimensionless spatial radial displacement computed at 0 0.005 st t= =  

considering an FGM cylinder under external pressure shock. 

 

Figure 44: Dimensionless spatial radial stress computed at 0 0.005 st t= =  considering an 

FGM cylinder under external pressure shock. 
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Figure 45: Dimensionless spatial tangential stress computed at 0 0.005 st t= =  considering 

an FGM cylinder under external pressure shock. 
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5.4 Annular external FGM coating thick-walled cylinder in plane 

strain condition  

 

Figure 46: Composite thick-walled cylinder under exponential internal pressure. 

The other problem we consider in numerical analyses is that of an annular FGM 

coating ( )1 or r r   bonded to a homogeneous substrate ( )1ir r r   on the external 

surface, as shown in Figure (46). The homogeneous substrate is assumed to be 

subjected to an internal exponential variation type pressure shock, exponential loading, 

whose mathematical representation is as follows: 

( ) ( )( )1 exp ,i aP t P t= − −   0,t         (129) 

Where, aP  is the inner pressure for a large period of time t, and   is a temporal 

constant with the unit 1 .s  

The pressure on the outer surface of the cylinder, ( ) ,oP t  is assumed to be zero and, 

material properties of the FGM external coating and the homogeneous internal 

substrate are varying according to a power law of volume fraction and defined by: 

( )

1

1

1
1

1
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, ,
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          (130) 
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Considering that the physical properties are continuous at the interface, 1.r r=  The 

composite thick-walled cylinder is in the plane strain state; and Poisson’s ratio is 

assumed constant and equals to 0.3. The radii are taken as: 0.05 m,ir =  1 0.1 m,r =  

and 0.2 m.or =  Hence, with an appropriate definition of the material properties for the 

elements in the FGM annular coating and the homogeneous internal substrate of the 

cylinder, the formulation and solution procedure described in chapter three, the D-

BEM formulation, can be applied to examine the elastodynamic behavior of the 

composite thick-walled cylinder. However, the homogeneous internal substrate is 

modelled by a total of 7 quadratic cells, whereas 15 quadratic cells are employed to 

model the external FGM coating, and the time step used for the Houbolt’s method is 

51 10  s− . The composite cylinder is subjected to an exponential internal dynamic 

pressure. However, the normalized parameters are expressed as: 

0 ,aP =   
0 .a

o

o

P
u r

E
=        (131) 

The time histories of the radial displacement, radial and circumferential stresses 

computed at the midpoint of wall’s thickness, ( )1 2,ir r r= +  of the homogeneous 

substrate, are illustrated in figures (47, 48 and 49), respectively.  

 

Figure 47: Dimensionless radial displacement at the mid-point, ( )1 2,ir r r= +  of the 

inner homogeneous substrate under internal exponential pressure 
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The material property exponents 1n  and 2n  are considered equal. The non-dimensional 

time t  is varied between 0 and 10. In each case, the trend of the oscillations is 

superimposed in an increasing or decreasing manner. 

 

Figure 48: Dimensionless radial stress at the mid-point, ( )1 2,ir r r= +  of the inner 

homogeneous substrate under internal exponential pressure 

 

Figure 49: Dimensionless tangential stress at the mid-point, ( )1 2,ir r r= +  of the 

inner homogeneous substrate under internal exponential pressure 
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The magnitude of the amplitudes For both the radial displacement and stress 

components, the magnitude becomes smaller as the exponents are decreased from 0.5 

to 1.−  This shows that for a FGM external coating with physical properties decreasing 

in radial direction, the midpoint of thickness amplitudes computed are less than those 

computed for a FGM coating that has increasing material properties, assuming that 

properties at or r=  are constant.  

Moreover, the numerical results that show the variations of the radial displacement 

and, the radial and hoop stresses at the midpoint of wall thickness, ( )1 2,or r r= +  of 

the functionally graded annular coating are shown in figures (50, 51 and 52).  

However, the trend of time histories of the radial displacement, radial and tangential 

stresses are generally similar to the one computed for the midpoint of the homogeneous 

substrate of the cylinder. On the other side, as the material property exponents 

decreased from 0.5 to 1− , the magnitudes of these variables for the FGM annular 

coating are also decreased.  

 

Figure 50: Dimensionless radial displacement at the mid-point, ( )1 2,or r r= +  of the FGM 

outer coating under internal exponential pressure. 
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Figure 51: Dimensionless radial stress at the mid-point, ( )1 2,or r r= +  of the FGM outer 

coating under internal exponential pressure. 

 

Figure 52: Dimensionless tangential displacement at the mid-point, ( )1 2,or r r= +  of the 

FGM outer coating under internal exponential pressure. 
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Furthermore, at the dimensionless time t  equals 10, the variation of the spatial radial 

displacement and, spatial radial and tangential stress components are plotted in figures 

(53, 54 and 55), respectively. As 1r r  is increased from 0.5 to 2.0, the radial 

displacements are positive and decreasing in the radial direction. Whereas, the radial 

stress satisfies the boundary conditions at both edges of the thick-walled cylinder, and 

it is increasing in the radial direction. Hence, the lowest radial stress magnitudes are 

computed at 1 2 1.n n= = − On the other hand, the circumferential stress is always 

positive for all values of the material property indices used; and it passes through a 

minimum value when the exponents are either 0.5 or 0. But, the circumferential stress 

is a decreasing function in the radial direction, when the material exponents are either 

0.5−  or 1.0,− . 

 

Figure 53: Dimensionless spatial radial displacement computed at 10t =  considering an 

external FGM coating under internal exponential pressure.  
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Figure 54: Dimensionless spatial radial stress computed at 10t =  considering an external 

FGM coating under internal exponential pressure.  

 

Figure 55: Dimensionless spatial tangential stress computed at 10t =  considering an 

external FGM coating under internal exponential pressure. 
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5.5 Annular internal FGM coating thick-walled cylinder in plane 

strain condition  

 

Figure 56: Annular internal FGM thick-walled cylinder under internal pressure. 

Another annular coating problem is considered in numerical analyses is that of an 

internal annular FGM coating ( )1ir r r   bonded by a homogeneous substrate 

( )1 or r r   on the external surface, as shown in Figure (56). The FGM internal coating 

is considered to be subjected to an internal exponential type of pressure shock, in 

which its mathematical representation is as follows:  

 

( ) ( )( )1 exp ,i aP t P t= − −   0,t          (132) 

Where, aP  is the inner pressure for a large period of time t, and   is a temporal 

constant with the unit 1 .s   

The pressure on the outer surface, ( ) ,oP t  is considered  zero and, material properties 

of the internal FGM coating and the external homogeneous substrate are varying 

according to a power law of volume fraction and defined by: 
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ro 
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r 

 



87 
 

( )

1

1 1

1

1 1

, ,

, ,

n

i

o

r
E r r r

E r r

E r r r

  
   =   


 

    ( )

2

1 1

1

1 1

, ,

, .

n

i

o

r
r r r

r r

r r r






  
   =   


 

 

          (133) 

Since the material properties are continuous at the interface, 1r r= ; therefore, the same 

procedure used before for the external annular coating can be used here as well. The 

composite cylinder is considered in the plane strain state; whereas, the Poisson’s ratio 

is constant and equals to 0.3. The radii are taken as 0.05 m,ir =  1 0.1 m,r =  and 

0.2 m.or = However, the formulation and solution procedure described in chapter 

three, the D-BEM formulation, can be applied to investigate the elastodynamic 

behavior of the composite cylinder under internal shock pressure, except that instead 

of o  and oE variables in the formulation 1  and 1E  are used. Hence, 10 quadratic 

cells are used to model the internal FGM coating; whereas the number of quadratic 

cells used to model the outer homogeneous substrate is 20. The time step employed in 

the time marching of the Houbolt’s method is also 
51 10  s.−  Numerical results for the 

composite cylinder under the exponential internal dynamic pressure are calculated.The 

normalized parameters are expressed as: 

0 ,aP =   
0 .a

o

o

P
u r

E
=        (134) 

Moreover, the response of the radial displacement and, the radial and circumferential 

stresses calculated at the midpoint of wall thickness, ( )1 2,ir r r= +  of the internal 

FGM coating are plotted, as shown in figures (57, 58 and 59), respectively. 

The exponents 
1n  and 

2n  are considered equal. Whereas, a non-dimensional time t  

is ranging from 0 to 10. Obviously, for the radial displacement, radial and tangential 

stresses, their magnitudes become smaller for a decreasing material exponent from 0.5 

to 1.−  It is also noticed that the oscillations trend of the homogeneous case has a time 

lag of the other FGM cases, and the radial stress components are compressive. 
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Figure 57: Dimensionless radial displacement at the mid-point, ( )1 2,ir r r= +  of the 

inner FGM coating under internal exponential pressure 

 

Figure 58: Dimensionless radial stress at the mid-point, ( )1 2,ir r r= +  of the inner 

FGM coating under internal exponential pressure 
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Figure 59: Dimensionless circumferential stress at the mid-point, ( )1 2,ir r r= +  of 

the inner FGM coating under internal exponential pressure 
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On the other side, Figures (60, 61 and 62) present the oscillations of the radial 

displacement and, the radial and tangential stress components at the midpoint, 

( )1 2,or r r= +  of the homogeneous outer substrate of the cylinder wall. The time 

histories are in general similar to the one determined for the midpoint of the FGM 

inner coating of the cylinder. The magnitudes for the displacement and stress for the 

outer homogeneous substrate also decrease as the exponents are reduced from 0.5 to 

1.−  

 

Figure 60: Dimensionless radial displacement at the mid-point, ( )1 2,or r r= +  of the 

outer homogeneous substrate under internal exponential pressure 
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Figure 61: Dimensionless radial stress at the mid-point, ( )1 2,or r r= +  of the outer 

homogeneous substrate under internal exponential pressure 

 

Figure 62: Dimensionless circumferential stress at the mid-point, ( )1 2,or r r= +  of 

the outer homogeneous substrate under internal exponential pressure 
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Furthermore, at a selected non-dimensional temporal point t  equals 10, figures (63, 

64 and 65) show the spatial variations of the non-dimensionless radial displacement 

and, radial and hoop stresses. The spatial radial displacements magnitudes are positive, 

and decrease as the non-dimensional radial coordinate, 
1r r , is increased from 0.5 to 

2.0. However, the radial stress satisfies the stress boundary conditions at the inner and 

outer edges of the cylinder, and its smallest values are found to be at the material 

property exponent 
1 2 1.n n= = −  Moreover, radial and circumferential stresses are 

mostly negative for the inner coating substrate but, in the homogenous substrate they 

become positive for all values of the exponents considered. 

 

Figure 63: Dimensionless spatial radial displacement computed at 10t =  considering an 

internal FGM coating under internal exponential pressure.  
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Figure 64: Dimensionless spatial radial stress computed at 10t =  considering an internal 

FGM coating under internal exponential pressure. 

 

Figure 65: Dimensionless spatial circumferential stress computed at 10t =  considering an 

internal FGM coating under internal exponential pressure. 
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CHAPTER 6 

CONCLUSIONS 

 

 

 

 In this research work, the elastodynamic analysis of functionally graded thick-

walled cylinders and annular coatings subjected to various types of pressure shocks 

with different loading conditions is performed by utilizing a new computational 

technique based on the domain boundary element method. The physical properties 

except Poisson’s ratio, which is considered constant and equal to 0.3, are assumed to 

be varying in the radial direction along the wall thickness according to a power law. 

The governing equation of motion is derived in agreement with the plane 

elastodynamics. The static fundamental solution, not the time dependent solution, is 

employed as the weight function to write the weighted residual form equation. 

Subsequently, the mathematical model of the problem is expressed by an integral 

equation in terms of the radial displacement and the inertia term. Hence, by applying 

the D-BEM technique, a system of temporal ordinary differential equations is achieved 

by the domain discretization with quadratic isoparametric elements due to the presence 

of inertia terms, and displacement domain terms. Houbolt’s time marching scheme are 

employed to solve numerically the obtained temporal system of algebraic equations. 

Moreover, the developed procedures are verified by different comparisons performed 

with the analytical results obtained from the literature, which validate our D-BEM 

procedure results. Furthermore, plane stress and plane strain states elastodynamic 

analysis of FGM hollow cylinder, subjected to internal shock loading, is studied to 

investigate the two states by performing a parametric analysis, in which time histories 

of radial displacement and stress components in functionally graded and composite 

thick-walled cylinder, subjected to a ramp type of pressure shock, are illustrated  

For a functionally graded thick-walled cylinder subjected to internal or external ramp 

shock loading, numerical results are generated. These results indicate that the material 

property exponents 1n  and 2n  have an important effect on the variations of both the 
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radial displacement and stress components. Furthermore, a reduction in the values of 

these material property exponents is shown to cause corresponding decrease in the 

amplitudes of the transient wave of the midpoint radial displacements and stress 

components. Thus, this further leads to the conclusion that in a FGM cylinder with a 

fixed physical property values at the outer surface, the transient midpoint radial 

displacement and, radial and circumferential stresses magnitudes calculated for a 

decreasing material property index are less than those calculated for higher material 

property indices. Since the external and internal coatings of pipes has become 

important in today industries; especially in gas and oil industry. Therefore, other sets 

of computational results are provided by considering in the first case a composite 

cylinder consists of an external FGM coating and a homogeneous internal substrate. 

While in the second case an internal FGM annular coating is considered. In both cases, 

the loading is taken as exponentially varied type of internal pressure shock. The 

parametric elastodynamic analysis which is performed, in the case of annular coating, 

result in a similar trend concerning the impact of power function exponents on 

transient midpoints of the homogeneous and FGM substrates; as well as the amplitudes 

of the radial displacement and stress components. Furthermore, the results generated 

for both the FGM and composite thick-walled cylinders also include the spatial 

variations of radial displacement and stress components for given points selected in 

time. 

Furthermore, a parametric analysis of the stress concentration related to the tangential 

stress is studied for the FGM thick-walled cylinder subjected to a ramp type of pressure 

shock. Three different temporal points and four different material property exponents 

are used in this investigation and, the maximum stress points and their normalized 

radial locations are determined. However, the maximum concentration points are 

found to be either at the inner or the outer surfaces depending on the material property 

exponents used. 

The method used in this research work is general that it permits the modelling of thick-

walled composite cylinders consisting of an arbitrary number of functionally graded 

and homogeneous annuli, and subjected to pressure shocks types of loading on both 

the inner and outer surfaces of the cylinder. Number of coating annuli, material 

property functions, and inner and outer pressure shock loading functions can be altered 
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to perform computations for different configurations. Thus, such analysis by the 

proposed numerical technique will result in high accuracy numerical results capable 

of revealing the elastodynamic behavior. Finally, the domain boundary element 

method presented in this work could be beneficial in the analysis, optimization and, 

design studies involving functionally graded material and composite thick-walled 

cylinders under different types of pressure shock loadings. 
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